

Study Guide

Naming Polygons

 $(\mathbf{0})_{-}$

A **polygon** is a plane figure formed by a finite number of segments. In a **convex polygon**, all of the diagonals lie in the interior. A regular polygon is a convex polygon that is both equilateral and equiangular. In a **concave polygon**, any point of a diagonal lies in the exterior.

Example:	Match each term with from the box below. S more than once.	B		
	 concave polygon convex polygon diagonal 	c a e	a. BVXKHWb. AFNTRc. RFANT	W
	 hexagon pentagon side 	a c d	d. \overline{TR} e. \overline{BX} f. R	

Classify each polygon (a) by the number of sides, (b) as regular or not regular, and (c) as convex or concave.

401

Geometry: Concepts and Applications

DATE PERIOD

NAME **Study Guide**

Diagonals and Angle Measure

A **polygon** is a plane figure formed by a finite number of segments such that (1) sides that have a common endpoint are noncollinear and (2) each side intersects exactly two other sides, but only at their endpoints. A **convex polygon** is a polygon such that no line containing a side of the polygon contains a point in the interior of the polygon.

The following two theorems involve the interior and exterior angles of a convex polygon.

Interior Angle Sum Theorem	If a convex polygon has <i>n</i> sides, then the sum of the measures of its interior angles is $(n - 2)180$.
Exterior Angle Sum Theorem	In any convex polygon, the sum of the measures of the exterior angles, one at each vertex, is 360.

Example: Find the sum of the measures of the interior angles of a convex polygon with 13 sides.

S = (n-2)180	Interior Angle Sum Theorem
S = (13 - 2)180	
S = (11)180	
S = 1980	

Find the sum of the measures of the interior angles of each convex polygon.

1. 10-gon	2. 16-gon	3. 30-gon
------------------	------------------	------------------

The measure of an exterior angle of a regular polygon is given. Find the number of sides of the polygon.

The number of sides of a regular polygon is given. Find the measures of an interior angle and an exterior angle for each polygon.

10. The measure of the interior angle of a regular polygon is 157.5. Find the number of sides of the polygon.

Areas of Polygons

The following theorems involve the areas of polygons.

Study Guide

- For any polygon, there is a unique area.
- Congruent polygons have equal areas.

NAME

• The area of a given polygon equals the sum of the areas of the nonoverlapping polygons that form the given polygon.

Example: Find the area of the polygon in square units.

Since the area of each four-dot unit represents 1 square unit, the area of each three-dot unit represents 0.5 square unit.

The area of the region is 7 square units, or 7 units².

Find the area of each polygon in square units.

NAME 10-4 **Study Guide**

Areas of Triangles and Trapezoids

The area of a triangle is equal to one-half its base times its altitude. $A = \frac{1}{2}bh$

Example 1: Find the area of the triangle.

$$A = \frac{1}{2}bh$$

 $A = \frac{1}{2}(7.5)(4)$ $b = 7.5, h = 4$
 $A = 2(7.5)$
 $A = 15$ The area is 15 square centimeters.

The area of a trapezoid is equal to one-half its altitude times the sum of its bases: $A = \frac{1}{2}h(b_1 + b_2)$.

Example 2: Find the area of the trapezoid.

$$A = \frac{1}{2}h(b_1 + b_2)$$

$$A = \frac{1}{2}(6)\left(10\frac{1}{2} + 14\frac{1}{2}\right) \quad h = 6, \ b_1 = 10\frac{1}{2}, \ b_2 = 14\frac{1}{2}$$

$$A = 3(25)$$

A = 75The area is 75 square inches.

Find the area of each triangle or trapezoid.

Study Guide

Areas of Regular Polygons

In a regular polygon, a segment drawn from the center of the polygon perpendicular to a side of the polygon is called an **apothem**. In the figure at the right, \overline{PS} is an apothem.

DATE

PERIOD

Area of a	If a regular polygon has an area of A square units, a
Regular	perimeter of P units, and an apothem of a units, then
Polygon	$A = \frac{1}{2}Pa.$

Example: Find the area of a regular pentagon with an apothem of 2.8 cm and a perimeter of 20.34 cm.

 $A = \frac{1}{2}Pa \qquad Area of a regular polygon$ $A = \frac{1}{2}(20.34)(2.8)$ A = 28.476

The area is 28.476 square centimeters.

Find the area of each regular polygon. Round your answers to the nearest tenth.

Find the area of each regular polygon described. Round your answers to the nearest tenth.

4. a hexagon with an apothem of 8.7 cm and sides that are each 10 cm long

5. a pentagon with a perimeter of 54.49 m and an apothem of 7.5 m

Find the area of each shaded region.

NAME **Study Guide**

DATE PERIOD

Symmetry

If you can fold a figure along a line so that the two parts reflect each other, the figure has a line of symmetry.

A figure has rotational symmetry if it can be turned less than 360° about its center and it looks like the original figure.

Draw the line(s) of symmetry for each figure.

Determine whether each figure has rotational symmetry.

Study Guide

NAME

Tessellations

Tessellations are patterns that cover a plane with repeating polygons so that there are no overlapping or empty spaces. A **regular tessellation** uses only one type of regular polygon. Semi-regular tessellations are uniform tessellations that contain two or more regular polygons.

In a tessellation, the sum of the measures of the angles of the polygons surrounding a point (at a vertex) is 360. If a regular polygon has an interior angle with a measure that is a factor of 360, then the polygon will tessellate.

Example: Identify the figures used to create the tessellation below. Then identify the tessellation as *regular*, semi-regular, or neither.

> Regular pentagons and two different types of parallelograms are used. Since the parallelograms are not regular, this tessellation is neither regular nor semi-regular.

Identify the figures used to create each tessellation. Then identify the tessellation as regular, semi-regular, or neither.

Use isometric or rectangular dot paper to create a tessellation using the given polygons.

- 4. scalene right triangles
- **5.** squares and isosceles trapezoids

431

6. parallelograms, rectangles, and hexagons

