\qquad
\qquad
\qquad

Study Guide

Parts of a Circle

A circle is the set of all points in a plane that are a given distance from a given point in the plane called the center. Various parts of a circle are labeled in the figure at the right. Note that the diameter is twice the radius.

Example: In $\odot F, \overline{A C}$ is a diameter.

- Name the circle. $\odot F$
- Name a radius. $\overline{A F}, \overline{C F}$, or $\overline{B F}$
- Name a chord that is not a diameter. $\overline{B C}$

Use $\odot S$ to name each of the following.

1. the center
2. three radii
3. a diameter
4. a chord

Use $\odot P$ to determine whether each statement is true or false.

5. $\overline{P C}$ is a radius of $\odot P$.
6. $\overline{A C}$ is a chord of $\odot P$.
7. If $P B=7$, then $A C=14$.

On a separate sheet of paper, use a compass and a ruler to make a drawing that fits each description.
8. $\odot A$ has a radius of 2 inches. $\overline{Q R}$ is a diameter.
9. $\odot G$ has a diameter of 2 inches. Chord $\overline{B C}$ is 1 inch long.
\qquad

Study Guide

Arcs and Central Angles

An angle whose vertex is at the center of a circle is called a central angle. A central angle separates a circle into two arcs called a major arc and a minor arc. In the circle at the right, $\angle C E F$ is a central angle. Points C and F and all points of the circle interior to $\angle C E F$ form a minor arc called arc $C F$. This is written $\overparen{C F}$. Points C and F and all points of the circle exterior to $\angle C E F$ form a major arc called $\overline{C G F}$.

You can use central angles to find the degree measure
 of an arc. The arcs determined by a diameter are called semicircles and have measures of 180 .

Examples: In $\odot R, m \angle A R B=42$ and $\overline{A C}$ is a diameter.
1 Find $m \widehat{A B}$.
Since $\angle A R B$ is a central angle and $m \angle A R B=42$, then $m \widehat{A B}=42$.

2 Find $m \widehat{A C B}$.

$$
m \widehat{A C B}=360-m \angle A R B=360-42 \text { or } 318
$$

3 Find $m \overline{C A B}$.

$$
\begin{aligned}
m \overline{C A B} & =m \overline{A B C}+m \widehat{A B} \\
& =180+42 \\
& =222
\end{aligned}
$$

Refer to $\odot P$ for Exercises 1-4. If $\overline{S N}$ and $\overline{M T}$ are diameters with $m \angle S P T=51$ and $m \angle N P R=29$, determine whether each arc is a minor arc, a major arc, or a semicircle. Then find the degree measure of each arc.

1. $m \widehat{N R}$
2. $m \overparen{S T}$
3. $m \overparen{T S R}$
4. $m \overline{M S T}$

11-8

NAME \qquad DATE \qquad
\qquad

Study Guide

Arcs and Chords

The following theorems state relationships between arcs, chords, and diameters.

- In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.
- In a circle, a diameter bisects a chord and its arc if and only if it is perpendicular to the chord.

Example: In the circle, O is the center, $O D=15$, and $C D=24$. Find x.

$$
\begin{aligned}
& E D= \frac{1}{2} C D \\
&=\frac{1}{2}(24) \\
&=12 \\
&(O E)^{2}+(E D)^{2}=(O D)^{2} \\
& x^{2}+12^{2}=15^{2} \\
& x^{2}+144=225 \\
& x^{2}=81 \\
& x=9
\end{aligned}
$$

In each circle, O is the center. Find each measure.

1. $m \overparen{N P}$

2. $K M$

3. $X Y$

4. Suppose a chord is 20 inches long and is 24 inches from the center of the circle. Find the length of the radius.
5. Suppose a chord of a circle is 5 inches from the center and is 24 inches long. Find the length of the radius.
6. Suppose the diameter of a circle is 30 centimeters long and a chord is 24 centimeters long. Find the distance between the chord and the center of the circle.
\qquad
\qquad

Study Guide

Inscribed Polygons

You can make many regular polygons by folding a circular piece of paper. The vertices of the polygon will lie on the circle, so the polygon is said to be inscribed in the circle.

1. Draw a circle with a radius of 2 inches and cut it out. Make the following folds to form a square.

Step A

Fold the circle in half.

Step B

Fold the circle in half again.

Step C
Unfold the circle.

Step D

Fold the four arcs designated by the creases.

2. Draw another circle with a radius of 2 inches and cut it out. Make the following folds to form a regular triangle.

Step A

Fold one portion in toward the center.

Step B

Fold another portion in toward the center, overlapping the first.

Step C

Fold the remaining third of the circle in toward the center.

3. Cut out another circle and fold it to make a regular octagon. Draw the steps used.
4. Cut out another circle and fold it to make a regular hexagon. Draw the steps used.
5. Cut out a circle with radius 4 inches and fold it to make a regular dodecagon. Draw the steps used.

NAME \qquad DATE \qquad
\qquad Study Guide

Circumference of a Circle

Examples: Find the circumference of each circle.

Find the circumference of each circle.
1.

2.

3.

4. The radius is $6 \frac{1}{5}$ feet.
5. The diameter is 4.7 yards.

Solve. Round to the nearest inch.

6. What is the circumference of the top of an ice cream cone if its diameter is about $1 \frac{7}{8}$ inches?
7. The radius of the basketball rim is 9 inches. What is the circumference?
\qquad
\qquad

Study Guide

Area of a Circle

The area A of a circle equals π times the radius r squared: $A=\pi r^{2}$.
Examples 1 Find the area of the circle.

$$
A=\pi r^{2}
$$

$A=\pi\left(\frac{13}{2}\right)^{2}$
$A=\pi(42.25)$

$A \approx 132.73$
The area of the circle is about $132.7 \mathrm{in}^{2}$.

2 Find the area of the shaded region.
Assume that the smaller circles are congruent.
Find the area of Find the area of the large circle. a small circle.

$$
\begin{array}{ll}
A=\pi r^{2} & A=\pi r^{2} \\
A=\pi(20)^{2} & A=\pi(6)^{2} \\
A \approx 1256.64 & A \approx 113.10
\end{array}
$$

Now find the area of the shaded region.

$$
\begin{aligned}
A & \approx 1256.64-3(113.10) \\
& \approx 1256.64-339.3 \\
& \approx 917.34
\end{aligned}
$$

The area of the shaded region is about $917.3 \mathrm{~m}^{2}$.

Find the area of each circle to the nearest tenth.
1.

2.

3.

Find the area of each shaded region to the nearest tenth.
4.

5.

6.

