

Study Guide

Parts of a Circle

A **circle** is the set of all points in a plane that are a given distance from a given point in the plane called the **center**. Various parts of a circle are labeled in the figure at the right. Note that the diameter is twice the radius.

Example: In $\bigcirc F$, \overline{AC} is a diameter.

- Name the circle. $\bigcirc F$
- Name a radius. \overline{AF} , \overline{CF} , or \overline{BF}
- Name a chord that is not a diameter. \overline{BC}

Use \odot S to name each of the following.

- **1.** the center
- **2.** three radii
- 3. a diameter
- 4. a chord

Use OP to determine whether each statement is true or false.

- **5.** \overline{PC} is a radius of $\bigcirc P$.
- **6.** \overline{AC} is a chord of $\bigcirc P$.
- **7.** If PB = 7, then AC = 14.

On a separate sheet of paper, use a compass and a ruler to make a drawing that fits each description.

- **8.** $\bigcirc A$ has a radius of 2 inches. \overline{QR} is a diameter.
- **9.** $\bigcirc G$ has a diameter of 2 inches. Chord \overline{BC} is 1 inch long.

DATE _____ PERIOD ___

DATE _____ PERIOD _____

Arcs and Central Angles

NAME

An angle whose vertex is at the center of a circle is called a **central angle**. A central angle separates a circle into two arcs called a **major arc** and a **minor arc**. In the circle at the right, $\angle CEF$ is a central angle. Points *C* and *F* and all points of the circle interior to $\angle CEF$ form a minor arc called arc *CF*. This is written CF. Points C and F and all points of the circle exterior to $\angle CEF$ form a major arc called CGF.

Study Guide

You can use central angles to find the degree measure of an arc. The arcs determined by a diameter are called **semicircles** and have measures of 180.

Examples: In $\bigcirc R$, $m \angle ARB = 42$ and \overline{AC} is a diameter.

1 Find $m\hat{A}\hat{B}$.

Since $\angle ARB$ is a central angle and $m \angle ARB = 42$, then mAB = 42.

2 Find mACB.

 $mACB = 360 - m \angle ARB = 360 - 42 \text{ or } 318$

3 Find $m\widehat{CAB}$.

 $m\widehat{CAB} = m\widehat{ABC} + m\widehat{AB}$ = 180 + 42= 222

Refer to $\odot P$ for Exercises 1–4. If \overline{SN} and \overline{MT} are diameters with $m \angle$ SPT = 51 and $m \angle$ NPR = 29, determine whether each arc is a minor arc, a major arc, or a semicircle. Then find the degree measure of each arc.

- 2. $m\hat{ST}$ 1. mNR
- 4. mMST3. mTSR

Study Guide

Arcs and Chords

The following theorems state relationships between arcs, chords, and diameters.

- In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.
- In a circle, a diameter bisects a chord and its arc if and only if it is perpendicular to the chord.

Example: In the circle, O is the center, OD = 15, and CD = 24. Find x.

$$\begin{split} ED &= \frac{1}{2} \, CD \\ &= \frac{1}{2} \, (24) \\ &= 12 \\ (OE)^2 + (ED)^2 = (OD)^2 \\ &x^2 + 12^2 = 15^2 \\ &x^2 + 144 = 225 \\ &x^2 = 81 \\ &x = 9 \end{split}$$

In each circle, O is the center. Find each measure.

461

- **4.** Suppose a chord is 20 inches long and is 24 inches from the center of the circle. Find the length of the radius.
- **5.** Suppose a chord of a circle is 5 inches from the center and is 24 inches long. Find the length of the radius.

Geometry: Concepts and Applications

6. Suppose the diameter of a circle is 30 centimeters long and a chord is 24 centimeters long. Find the distance between the chord and the center of the circle.

NAME **Study Guide**

Inscribed Polygons

You can make many regular polygons by folding a circular piece of paper. The vertices of the polygon will lie on the circle, so the polygon is said to be inscribed in the circle.

1. Draw a circle with a radius of 2 inches and cut it out. Make the following folds to form a square.

2. Draw another circle with a radius of 2 inches and cut it out. Make the following folds to form a regular triangle.

Step A Fold one portion in toward the center.

Step B Fold another portion in toward the center, overlapping the first.

Step C Fold the remaining third of the circle in toward the center.

- **3.** Cut out another circle and fold it to make a regular octagon. Draw the steps used.
- 4. Cut out another circle and fold it to make a regular hexagon. Draw the steps used.
- 5. Cut out a circle with radius 4 inches and fold it to make a regular dodecagon. Draw the steps used.

Examples: Find the circumference of each circle.

Find the circumference of each circle.

4. The radius is $6\frac{1}{5}$ feet.

5. The diameter is 4.7 yards.

Solve. Round to the nearest inch.

- 6. What is the circumference of the top of an ice cream cone if its diameter is about $1\frac{7}{8}$ inches?
- 7. The radius of the basketball rim is 9 inches. What is the circumference?

NAME **Study Guide**

13 in.

Area of a Circle

The area A of a circle equals π times the radius r squared: $A = \pi r^2$.

1 Find the area of the circle. **Examples**

> $A = \pi r^2$ $A = \pi \left(\frac{13}{2}\right)^2$ $A = \pi(42.25)$ $A \approx 132.73$ The area of the circle is about 132.7 in².

2 Find the area of the shaded region.

Assume that the smaller circles are congruent.

Find the area of Find the area of the large circle. a small circle.

 $A = \pi r^2$ $A = \pi r^2$ $A = \pi(6)^2$ $A = \pi (20)^2$ $A \approx 113.10$ $A \approx 1256.64$

Now find the area of the shaded region.

 $A \approx 1256.64 - 3(113.10)$ $\approx 1256.64 - 339.3$ ≈ 917.34

The area of the shaded region is about 917.3 m^2 .

Find the area of each circle to the nearest tenth.

Find the area of each shaded region to the nearest tenth.

