Pre-Calculus Formula Sheet

Standard Form of an Ellipse
$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
$a^{2}-b^{2}=c^{2}$
Standard Form of a Hyperbola
$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
$\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
$a^{2}+b^{2}=c^{2}$
Standard Form of a Parabola
$(\mathrm{y}-\mathrm{k})^{2}=4 \mathrm{p}(\mathrm{x}-\mathrm{h})$
$(\mathrm{x}-\mathrm{h})^{2}=4 \mathrm{p}(\mathrm{y}-\mathrm{k})$
General term of an Arithmetic
Sequence
$a_{n}=a_{1}+(n-1) d$
Sum of an Arithmetic Sequence
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
General term of a Geometric
Sequence
$a_{n}=a_{1} r^{n-1}$

Sum of a Finite Geometric Series
$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$
Sum of an Infinite Geometric
Series
$S=\frac{a_{1}}{1-r} \quad|r|<1$
Regular Interest
$A=P\left(1+\frac{r}{n}\right)^{n t}$
$A=P e^{r t}$
Present Annuity

$$
P_{n}=P\left[\frac{1-\left(1+\frac{r}{n}\right)^{-n t}}{\frac{r}{n}}\right]
$$

Future Annuity
$F_{n}=P\left[\frac{\left(1+\frac{r}{n}\right)^{n t}-1}{\frac{r}{n}}\right]$

