Name

PearsonRealize.com

2-4 Reteach to Build Understanding

Parallel and Perpendicular Lines

1. The graphs show a pair of parallel and a pair of perpendicular lines.

Determine whether the lines for each pair of equations are *parallel*, *perpendicular* or *neither*. Circle your response.

y = 2x - 4 y = -2x + 5	Parallel	Perpendicular	Neither
$y = \frac{2}{3}x + 1$ $y = -\frac{3}{2}x - 2$	Parallel	Perpendicular	Neither
y = -3x - 1 y = -3x + 2	Parallel	Perpendicular	Neither

- 2. Don says that of $y = \frac{3}{4}x + 2$ is parallel to $y = \frac{3}{4} + 8x$. Is he correct? Why or why not?
- 3. What is an equation in slope-intercept form of the line that passes through (2, 11) and is perpendicular to the graph of $y = \frac{1}{4}x 5$? Complete the missing steps.

First, identify the slope of the given line. The slope is $\frac{1}{4}$. The slope of the perpendicular line is the negative reciprocal. The slope of the perpendicular line is _____.

 $y - y_1 = m(x - x_1)$ Point-slope form of a linear equation. $y - ___= -4(x - __])$ Substitute (2, 11) for (x_1, y_1) and -4 for m. $y - ___= -4x + __$ Apply the Distributive Property and solve for y.

An equation in slope-intercept form is _____