Reteach to Build Understanding

Parallel and Perpendicular Lines

1. The graphs show a pair of parallel and a pair of perpendicular lines.

Nonvertical lines are parallel if they have the same slope, but different y-intercepts. The lines have a slope of 2 and different y-intercepts.${ }^{2}$

Determine whether the lines for each pair of equations are parallel, perpendicular or neither. Circle your response.

$y=2 x-4$	Parallel	Perpendicular	Neither
$y=-2 x+5$	Parallel	Perpendicular	Neither
$y=\frac{2}{3} x+1$			
$y=-\frac{3}{2} x-2$	Parallel	Perpendicular	Neither
$y=-3 x-1$			
$y=-3 x+2$	y		

2. Don says that of $y=\frac{3}{4} x+2$ is parallel to $y=\frac{3}{4}+8 x$. Is he correct? Why or why not?
3. What is an equation in slope-intercept form of the line that passes through $(2,11)$ and is perpendicular to the graph of $y=\frac{1}{4} x-5$? Complete the missing steps.
First, identify the slope of the given line. The slope is $\frac{1}{4}$. The slope of the perpendicular line is the negative reciprocal. The slope of the perpendicular line is \qquad .
$y-y_{1}=m\left(x-x_{1}\right) \quad$ Point-slope form of a linear equation.
$y-\ldots=-4(x-\ldots) \quad$ Substitute $(2,11)$ for $\left(x_{1}, y_{1}\right)$ and -4 for m.
$y-\quad=-4 x+\quad$ Apply the Distributive Property and solve for y.
An equation in slope-intercept form is \qquad .
