Name _

3-4 Additional Practice

enVision Algebra

Arithmetic Sequences

Tell whether or not each sequence is an arithmetic sequence. If it is an arithmetic sequence, give the common difference.

1 . 4, 8, 12, 16, 2 . –	11, 5, 0, 6,	3. 12, 23, 34, 45,
---------------------------------------	--------------	---------------------------

Write a recursive formula and an explicit formula for each arithmetic sequence.

4 . 9, 15, 21, 27,	5. 1.5, 2.25, 3, 3.75,	6. 7, 0, -7, -14,
Recursive:	Recursive:	Recursive:

Explicit: Explicit: Explicit:

Write an explicit formula for each recursive formula and a recursive formula for each explicit formula.

- **7.** $a_1 = 5$ $a_n = a_{n-1} + 3$ **8.** $a_1 = -8$ $a_n = a_{n-1} - 3$ **9.** $a_n = 15 + 4n$
- **10.** You are given the first four terms of an arithmetic sequence. Why might you use a recursive formula? Why might you use an explicit formula? Under what conditions might a recursive formula be preferred over the explicit formula? Under what conditions might an explicit formula be preferred over the recursive formula?

11. You open a savings account with a \$400 deposit. Each month after that, you deposit \$25. Write an explicit rule to represent the amount of money you deposit into your savings account. How much money will you have in the account on month 12?