PRACTICE & PROBLEM SOLVING

Scan for Multimedia

UNDERSTAND

- **10. Communicate Precisely**
 - Many calculators use an INT function which returns the greatest integer less than or equal to x. The graph of Y1 = INT(X) is shown. How is this function like

the floor function? How is it different?

- **11. Look for Relationships** How are the pieces of a step function related to the domain of the function? Justify your thinking.
- **12. Error Analysis** Kenji wrote a step function to round numbers up to nearest multiple of three. Describe and correct the error he made.

 $f(x) = \begin{cases} 3, 3 < x \le 6\\ 6, 6 < x \le 9\\ 9, 9 < x \le 12\\ 12, 12 < x \le 15 \end{cases}$

13. Communicate Precisely

Explain how you can use the graph shown below to find the value of the step function for x = 1. How is this different from finding the value for x = 1 when the graph of a function is a straight line?

- **14. Higher Order Thinking** Results of the **INT** function are shown in the spreadsheet.
 - a. If f(x) = INT(x), what is f(4.6), f(5), and f(-6.5)?
 - **b.** Write f(x) = INT(x)as a step function for the domain $-4 \le x \le 4$.

		A	В	
	1	-3.1	=INT(A1)	
Ĩ	2	-2.4	-3	ľ
	3	-1.8	-2	
	4	-0.9	—1	
	5	0	0	
	6	0.8	0	
	7	1.9	1	
	8	2.8	2	

PRACTICE

Evaluate the function for the given value.

SEE EXAMPLE 1 15. f(x) = [x]; x = 0.116. f(x) = ceiling(x); x = 5.1517. f(x) = [x]; x = -4.0118. f(x) = ceiling(x); x = 13.2019. f(x) = [x]; x = 7.0620. f(x) = floor (x); x = 33.721. f(x) = floor (x); x = 23.2

- **22.** $f(x) = \lfloor x \rfloor; x = -8.4$

For each table, graph the step function and write a rule for *f* using the ceiling or floor function. SEE EXAMPLES 2 AND 3

23.	x	f(x)
	$0 < x \le 1$	5
	$1 < x \le 2$	6
	$2 < x \le 3$	7
	$3 < x \leq 4$	8
	$4 < x \le 5$	9
	5 < <i>x</i> ≤ 6	10

^{24.}

x	f(x)
$0 \le x < 2$	3
$2 \le x < 4$	4
4 ≤ <i>x</i> < 6	5
$6 \le x < 8$	6
$8 \le x < 4$	7
$4 \le x < 12$	8

Sketch the graph of each function over the domain $0 < x \le 10$.

- **25.** The function g returns the greatest integer g(x) that is less than or equal to x + 2.
- **26.** The function f returns the least integer f(x) that is greater than 3x.

PRACTICE & PROBLEM SOLVING

APPLY

- 27. Mathematical Connections There are 240 seniors in Kathryn's school. Her class is planning a trip, and is taking buses that hold a maximum of 50 passengers. Assume that the trip is optional.
 - **a.** Write a step function *f* that maps the number of students x, to the number of buses needed, f(x).
 - b. What assumptions to do you need to make to write the function?
 - c. What is the average rate of change of the function over the interval from 40 to 60? From 60 to 80?
 - d. What do the average rates of change mean in terms of the situation? Explain.
- 28. Construct Arguments Amit parked his car for 144 h, and Nan parked her car for 145 h. Will Nan pay more? If so, how much? Make a table and then graph a function to support your answer.

Airport Parking Rates

\$50 for first 24 hours plus \$25 for each additional 24 hours.

Any fraction of a 24-hour period will be charged for the entire 24-hour period.

29. Model With Mathematics Mia has \$350 in her bank account at the beginning of the school year. Every week she withdraws \$50. Two graphs model the situation.

- a. Write a function for each graph.
- **b.** How do the graphs and the functions differ in how they represent the situation?
- c. What are the advantages and disadvantages of each type of function?

ASSESSMENT PRACTICE

30. A resort rents skis for \$15 for the first hour and \$7.50 for each additional hour. Copy and complete the table for the step function that models the total cost. in dollars, of renting skis for x hours.

x	<i>f(x)</i>
	15
$1 < x \le 2$	
$3 < x \leq 4$	
	45
$5 < x \le 6$	

31. SAT/ACT What is the value of f(2) + f(4) + f(11) + f(12) for the function f?

f(x) = <	$\begin{cases} 100, \ 0 < x \le 4 \\ 95, \ 4 < x \le 8 \\ 90, \ 8 < x \le 12 \\ 95, \ 12 < x \le 16 \end{cases}$

A 30 B 280

© 290 D 380

- **E** 300
- 32. Performance Task Abdul and his family are traveling on a toll highway. The table shows the cost of using the highway as a function of distance.

Exit Number	Distance (mi)	Toll (\$)
1	0	0.00
2	40	1.25
3	75	1.75
4	85	1.90
5	120	2.25
6	150	2.50

Part A Write a step function *t* to represent the cost of the tolls in terms of distance.

Part B Assume their car averages 30 mi/gal and gasoline costs \$3.50/gal. Write a function g to represent the cost of the gas in terms of distance.

Part C Use functions t and g to determine the cost of Abdul's trip if his family leaves the highway at Exit 5.

