Name _

Topic 5 : Convision STEM Project

Introduction to Nonlinear Functions

Model an Insect Population, Part 1

The function below models a cicada population:

 $f(x) = k \cdot f(x - 1) \cdot [1 - f(x - 1)]$, where f(0) = 0.1

and $f(1) = k(0.1) \cdot (1 - 0.1)$

The constant k, between 0 and 4, is the growth parameter that controls how quickly the population grows.

For each value of k below, find the point at which the population is stable. Explain how you know the population is stable.

<i>k</i> = 2	<i>k</i> = 1	<i>k</i> = 1.5

enVision Algebra 1

PearsonRealize.com

BLM 1

Topic 5 : Rision STEM Project

Introduction to Nonlinear Functions

The function below models a cicada population:

$$f(x) = k \cdot f(x - 1) \cdot [1 - f(x - 1)]$$
, where $f(0) = 0.1$

and $f(1) = k(0.1) \cdot (1 - 0.1)$

What happens to the population for each value of k below? Explain your findings.

<i>k</i> = 0.5	<i>k</i> = 3	<i>k</i> = 4
	1	

PearsonRealize.com

BLM 2

Name _

Topic 5 : Convision STEM Project

Introduction to Nonlinear Functions

Model an Insect Population, Part 3

The function below models a cicada population:

 $f(x) = k \cdot f(x - 1) \cdot [1 - f(x - 1)]$, where f(0) = 0.099

and $f(1) = k(0.099) \cdot (1 - 0.099)$

What happens to the population for each value of k below? Explain your findings.

k = 2	<i>k</i> = 1	<i>k</i> = 4

PearsonRealize.com

BLM 3

PearsonRealize.com

Topic 5 : Rision STEM Project

Introduction to Nonlinear Functions

Analyze an Insect Population

What would be the best value of k for an insect population, and why?
What would happen if human interaction caused changes to the value of k
(increases or decreases)?
(incleases of decreases):
Extension Why do you think k is limited to between 0 and 42
Extension why do you think k is inflited to between 0 and 4?
Extension If the previous population is p, what do the terms p and $(1 - p)$
represent for determining the next population?
Extension Try to find values of $f(0)$ and k that reproduce the 17-year cicada's
haberier