Topic Review

TOPIC ESSENTIAL QUESTION

1. How do you use piecewise-defined functions to model situations and solve problems?

Vocabulary Review

Choose the correct term to complete each sentence.
2. The \qquad intersects the vertex, and divides the graph into two congruent halves that are images of each other under a reflection.
3. The \qquad rounds numbers up to the nearest integer.
4. The \qquad has an algebraic expression with absolute value symbols.
5. $A(n)$ \qquad has different rules for different intervals of its domain.

- absolute value function
- axis of symmetry
- ceiling function
- floor function
- piecewise-defined function
- step function
- vertex

Concepts \& Skills Review

LESSON 5-1 The Absolute Value Function

Quick Review

The graph of the absolute value function, $f(x)=|x|$ has a vertex at $(0,0)$ and an axis of symmetry $x=0$.

Example

How do the domain and range of $g(x)=0.5|x|$ compare with the domain and range of $f(x)=|x|$?

The domain of f and the domain of g are all real numbers. The range of both functions is $y \geq 0$.

Practice \& Problem Solving

Tell whether each point is on the graph of $f(x)=|x|$. If it is, give the coordinates of the another point with the same y-coordinate.
6. $(8,8)$
7. $(-5,5)$
8. (-3.5, -3.5)

Graph each function. What is the domain and range of each function?
9. $f(x)=-2.5|x|$
10. $g(x)=\frac{1}{3}|x|$

For each function, find the vertex and tell whether it represents a maximum or minimum value of the function.
11. $g(x)=-6.3|x|$
12. $g(x)=7|x|$
13. Look for Relationships Find the domain, range, and vertex of the graphed function.

LESSON 5-2 Piecewise-Defined Functions

Quick Review

A piecewise-defined function has different rules for different intervals of the domain.
You can express functions of the form $g(x)=a|x|$ as piecewise-defined functions using a pair of linear rules with boundaries on the domain.

Example
What is the graph of $f(x)=\left\{\begin{array}{cl}-x-5, & x<0 \\ \frac{1}{4} x+2, & x \geq 0\end{array}\right.$?
Over what interval of the domain is the function increasing? Decreasing?
Graph each rule of the function for the given interval of the domain.

The function is decreasing when $x<0$. The function is increasing when $x \geq 0$.

Practice \& Problem Solving

Express each function as a piecewise-defined function.
14. $f(x)=4|x|$
15. $f(x)=-2|x|$

Graph each piecewise-defined function.
Identify the intervals over which the function is increasing, decreasing, or constant.
16. $f(x)= \begin{cases}x+1, & x<-1 \\ \frac{1}{2} x-2, & -1 \leq x\end{cases}$
17. $f(x)=\left\{\begin{array}{rr}-x+4, & -2<x \leq 3 \\ x-5, & 3<x\end{array}\right.$
18. Error Analysis Describe and correct the error a student made in expressing the function $f(x)=-5|x|$ as a piecewise-defined function.

$$
f(x)=-5|x|, f(x)=\left\{\begin{array}{r}
-5 x, x<0 \\
5 x, x>0
\end{array}\right.
$$

19. Write a piecewise-defined function that represents the graph.

20. Model With Mathematics A jeweler sells rings for $\$ 35$ each plus a flat fee of $\$ 5$ for shipping for orders up to 10 rings. If customers order more than 10 rings, the cost is $\$ 30$ per ring and shipping is free. Write a piecewise function to represent the situation.

LESSON 5-3 Step Functions

Quick Review

Step functions are a type of piecewise-defined function that consists of constant pieces. The constant pieces of the function result in a graph that looks like the steps of a staircase.
The floor and ceiling functions are specific types of step functions. The ceiling function rounds numbers up to the nearest integer. The floor function rounds numbers down to the nearest integer.

Example
Graph the function f. What is the domain and range of the function?

x	$f(x)$
$0<x \leq 3$	4
$3<x \leq 6$	6
$6<x \leq 9$	8
$9<x \leq 12$	10

Each section of the domain has a single value assigned to it.

The domain of f is $0<x \leq 12$. The range is the set values $\{4,6,8,10\}$.

Practice \& Problem Solving

Evaluate the ceiling function for the given value.
21. $f(x)=\lceil x\rceil ; x=7.03$
22. $f(x)=$ ceiling $(x) ; x=2.6$

Evaluate the floor function for the given value.
23. $f(x)=\lfloor x\rfloor ; x=6.1$
24. $f(x)=$ floor $(x) ; x=0.08$

For each table, graph the step function and write a rule for f using a ceiling or floor function.
25.

x	$f(x)$
$1<x \leq 2$	7
$2<x \leq 3$	8
$3<x \leq 4$	9
$4<x \leq 5$	10
$5<x \leq 6$	11

26.

x	$f(x)$
$0<x \leq 2$	-2
$2<x \leq 4$	-3
$4<x \leq 6$	-4
$6<x \leq 8$	-5
$8<x \leq 10$	-6

Sketch the graph of each function over the domain $0<x \leq 10$.
27. The function g returns the greatest integer $g(x)$ less than or equal to $2 x$.
28. The function f returns the least integer $f(x)$ greater than $x-3$.
29. Make Sense and Persevere Egg cartons hold a dozen eggs in each container. Write a step function that represents the number of egg cartons needed as a function of the number of eggs over the domain $0<x \leq 72$. Is the function a floor or a ceiling function? Explain.

LESSON 5-4 Transformations of Piecewise-Defined Functions

Quick Review

The graph of $g(x)=a|x-h|+k$ is a transformation of the graph of $f(x)=|x|$ when $a \neq 1, h \neq 0$, or $k \neq 0$. The vertex of the graph is located at (h, k). The value of h indicates that the graph of g is a horizontal translation of h units of the graph of f. The value of k indicates that the graph of g is a vertical translation of k units of the graph of f. When $|a|>1$, the graph of g is a vertical stretch of the graph of f. When $0 \leq|a| \leq 1$, the graph is a vertical compression of the graph of f.

Example

For the function $g(x)=2|x+3|-4$, find the vertex and graph the function. Describe the graph of g as a transformation of the graph of $f(x)=|x|$.

The vertex is located at (h, k), so the vertex of this graph is $(-3,-4)$.
Graph the function.

The graph of g is a translation of the graph of f horizontally, 3 units to the left, and vertically 4 units down. It is also a vertical stretch of the graph of f by a factor of 2 .

Practice \& Problem Solving

Find the vertex and graph each function.
30. $g(x)=|x|+4$
31. $g(x)=|x-2|$
32. $g(x)=|x+1|-2$
33. $g(x)=|x-3|+1$

Compare each function with $f(x)=|x|$. Describe the graph of g as transformation of the graph of f.
34. $g(x)=2|x+6|-1$
35. $g(x)=-|x-2|-1$
36. $g(x)=-0.5|x|+4$
37. $g(x)=\frac{3}{2}|x-1|+8$

Write the function that includes absolute value expressions for each graph.
38.

39.

40. Use Structure Write two functions that have a vertex of $(2,-1)$.

What function g describes the graph of f after

 the given transformations?41. $f(x)=|x|+3$; translated 1 unit up and 5 units right
42. $f(x)=|x-1|+5$; translated 2 units down and 4 units left
43. Make Sense and Persevere A traffic cone is 18 in. tall and 12 in . wide. You want to sketch an image of the traffic cone on a coordinate grid with one edge at (0,0). What function that includes an absolute value expression could represent the traffic cone? What would be the domain of the function? Explain.
