6-3 Additional Practice

Exponential Growth and Decay

Write an exponential growth model for each situation.

1. initial value: 2,000
growth rate: 6\%
2. initial value: 50
growth rate: 75\%
3. initial value: 40
growth rate: 100\%

Write an exponential decay model for each situation. The value of x for each value of $f(x)$ will lie between two consecutive whole numbers. List the whole numbers.
4. initial value: 1,000
decay rate: 20\%
$f(x)=500$
5. initial value: 1,800
decay rate: 7\%
$f(x)=400$
6. initial value: 1,200
decay rate: 12.5\%
$f(x)=450$
7. Suppose the function f has an initial value of 1,000 and a decay rate of 5%. Let the function g have an initial value of 400 and increase at a growth rate of 17%. Estimate a value of x, to the nearest tenth, for which $f(x)=g(x)$.
8. An exponential function has an initial value of 500 and a decay rate of 15%. Compare the average rate of change for the interval $0<x<4$ to the average rate for the interval $4<x<8$. What do you think will happen to the average rate of change for intervals beyond $x=8$? Explain.
9. Harrison is comparing two certificates of deposit, one at a local financial institution and the other at an online financial institution. The local institution offers a rate of 6\% compounded annually while the online institution offers a rate of 6% compounded quarterly. If Harrison has a principal amount of $\$ 5,000$, which institution offers the better deal, assuming he makes no further deposits or withdrawals? Explain.

