6-3 Additional Practice

Exponential Growth and Decay

Write an exponential growth model for each situation.

1. initial value: 2,000	2. initial value: 50	3. initial value: 40
growth rate: 6%	growth rate: 75%	growth rate: 100%

Write an exponential decay model for each situation. The value of x for each value of f(x) will lie between two consecutive whole numbers. List the whole numbers.

4.	initial value: 1,000	5. initial value: 1,800	6. initial value: 1,200
	decay rate: 20%	decay rate: 7%	decay rate: 12.5%
	f(x) = 500	f(x) = 400	f(x) = 450

- 7. Suppose the function f has an initial value of 1,000 and a decay rate of 5%. Let the function g have an initial value of 400 and increase at a growth rate of 17%. Estimate a value of x, to the nearest tenth, for which f(x) = g(x).
- 8. An exponential function has an initial value of 500 and a decay rate of 15%. Compare the average rate of change for the interval 0 < x < 4 to the average rate for the interval 4 < x < 8. What do you think will happen to the average rate of change for intervals beyond x = 8? Explain.

9. Harrison is comparing two certificates of deposit, one at a local financial institution and the other at an online financial institution. The local institution offers a rate of 6% compounded annually while the online institution offers a rate of 6% compounded quarterly. If Harrison has a principal amount of \$5,000, which institution offers the better deal, assuming he makes no further deposits or withdrawals? Explain.