7-7 Reteach to Build Understanding

Factoring Special Cases

1. Label each item as perfect-square trinomial or difference of two squares.

$$
\begin{aligned}
& a^{2}-b^{2}=(a+b)(a-b) \\
& x^{2}-12 x+36=(x-6)^{2}
\end{aligned}
$$

\qquad
Use this pattern when the first and last terms are perfect squares and the middle term is twice the product of the expressions being squared. \qquad

$$
a^{2}-2 a b+b^{2}=(a-b)^{2}
$$

\qquad
Use this pattern when a binomial can be written as the square of one number minus the square of another number.

$$
\begin{aligned}
& 4 x^{2}-49=(2 x-7)(2 x+7) \\
& a^{2}+2 a b+b^{2}=(a+b)^{2}
\end{aligned}
$$

\qquad
\qquad
2. Complete the steps for factoring $2 x^{3}-36 x^{2}+162 x$ by writing words, numbers, or expressions in the blanks.

$$
\begin{array}{ll}
2 x^{3}-36 x^{2}+162 x=_ & \left(x^{2}-18 x+81\right) \\
=\quad\left[x^{2}-2(\square) x+(\square)\right. & \text { Factor out } \\
=\quad(x-\square) & \text { Rewrite the trinomial. }
\end{array}
$$

pattern.

$$
=\quad(x-\ldots)^{2} \quad \text { Simplify } .
$$

3. Describe and correct the error Teddy made in factoring $x^{2}-49$.
$x^{2}-49=(x-7)^{2}$
Both terms in the binomial are perfect squares, so use the perfect-square trinomial pattern.
