Name:
Alg 1

Class: ass \quad va te
vice $v\left(h_{1} k\right) \quad$ os $: x=h$

Standard: $a x^{2}+b x+c$ a os: $x \neq \frac{-b}{2 a b} x$ $V:(1, ?)$
What are the coordinates of the vertex of the graph or table? Is it a maximum or minimum?
1.

a. $(-1,0)$; maximum
C. $(0,-1)$; maximum
b. $(-1,0)$; minimum
d. $(0,-1)$; minimum
2.

a. $(-4,-2)$; minimum
c. $(-2,-4)$; minimum
b. $(-2,-4)$; maximum
$(-4,-2)$; maximum
\qquad
3.

\boldsymbol{X}	\boldsymbol{Y}
0	1
-1	-2
-2	-3
-3	-2
-4	1

a. $(-4,1)$; minimum
(b.) $(-2,-3)$; minimum
c. $(-2,-3)$; maximum
d. $(1,0)$; maximum

- lowest point

Order the group of quadratic functions from widest to narrowest graph.
4. $y=-4 x^{2}, y=-3 x^{2}, y=-5 x^{2}$
a. $y=-3 x^{2}, y=-5 x^{2}, y=-4 x^{2}$
b. $y=-5 x^{2}, y=-4 x^{2}, y=-3 x^{2}$
c. $y=-3 x^{2}, y=-4 x^{2}, y=-5 x^{2}$
d. $y=-4 x^{2}, y=-3 x^{2}, y=-5 x^{2}$

A
5. What is the rate of change for the interval between A and B ?

slope

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { or } \frac{n s e}{\text { rein }}
$$

$$
=\frac{+3}{1}
$$

(a.) 3
c. 0
b. $\frac{1}{3}$
d. 1
6. Use the table of $f(x)=-4 x^{2}$. Over what interval is the function increasing? Over what interval is the function decreasing?

\boldsymbol{x}	$f(x)$	(x, y)
-2	-16	$(-2,-16)$
-1	-4	$(-1,-4)$
0	0	$(0,0)$
1	-4	$(1,-4)$
2	-16	$(2,-16)$

a. decreasing over all real numbers
b. decreasing over $x<0$ and increasing over $x>0$
c. increasing over $x<0$ and decreasing over $x>0$
d. increasing over all real numbers
7. What steps transform the graph of $y=x^{2}$ to $y=-(x+3)^{2}+5$?
a. translate 3 units to the right, translate down 5 units
b. translate 3 units to the left, translate up 5 units
c. reflect across the x-axis, translate 3 units to the left, translate up 5 units
d. reflect across the x -axis, translate 3 units to the right, translate down 5 units

Graph each function. How is each graph a translation of $f(x)=x^{2}$?
B $V:(-3,4)$
8. $y=(x+3)^{2}+4$
a.

c.

$f(x)$ translated down 4 units) and
(b.) translated to the left 3 units)

$f(x)$ translated up 4 units) and translated to the left 3 units).
$f(x)$ translated down 4 units) and translated to the right 3 units)
d.

$f(x)$ translated up 4 units) and translated to the right 3 units)
\qquad

C 9. Identify the vertex and the axis of symmetry of the graph of the function $y=2(x+2)^{2}-4$.
a. vertex: $(-2,4)$; axis of symmetry: $x=-2$
b. vertex: $(2,-4)$; axis of symmetry: $x=2$
(c.) vertex: $(-2,-4)$;
axis of symmetry: $x=-2$
d. vertex: $(2,4)$; axis of symmetry: $x=2$
10. Use the vertex form to write the equation of the parabola.

a. $y=3(x-2)^{2}+2$
c. $y=3(x+2)^{2}+2$
b. $y=3(x-2)^{2}-2$
d. $y=(x+2)^{2}+2$

Name:
$A:(-2,1)$
11. Which is the graph of $y=(x+2)^{2}+1$?

c.

b.

d.

Name: \qquad ID: X

Graph the function. Identify the vertex and axis of symmetry.
C_{1} 13. $\left.f(x)=x^{2}+4 x-1\right)=\frac{-b}{2 a}=\frac{-4)}{2(1)}=\frac{-4}{2}=-20$
a.

axis of symmetry: $x=2$ vertex: $(2,-3)$
b.

axis of symmetry: $x=-2$
vertex: $(-2,3)$

axis of symmetry: $x=-2$
vertex: $(-2,-3)$
d.

axis of symmetry: $x=2$
vertex: $(2,3)$
\qquad
14. Sketch a parabola with an axis $\mathrm{QO}>$
y-intercept 1, and point $(1,-5)$.

a.

c.

d.

What is the vertex form of the equation?
C15. $y=x^{2}-2 x+8$
a. $y=(x+1)^{2}+7$
c. $y=(x-1)^{2}+7$

$$
(x-1)(x-1)+7
$$

b. $y=(x+1)^{2}-7$
d. $y=(x-1)^{2}-7$

$$
\begin{aligned}
& (x+1)^{1}(x+1)-7 \\
& x^{2}+x+x+1-7 \\
& x^{2}+2 x-6(11)
\end{aligned}
$$

$$
x^{2}+x+x+1+7
$$

$$
x^{2}+2 x+8 \text { (11) }
$$

