PRACTICE & PROBLEM SOLVING

Additional Exercises Available Online

UNDERSTAND

10. Generalize The graph of the parent quadratic function $f(x) = x^2$ and that of a second function of the form $g(x) = ax^2$ are shown. What conclusion can you make about the value of a in the equation of the second function?

11. Error Analysis Describe and correct the error a student made in finding the average rate of change for $f(x) = 0.5x^2$ over the interval $-4 \le x \le -2$.

Find the slope of the line that passes through (-4, -8) and (-2, -2).

 $\frac{-2-(-8)}{-2-(-4)} = \frac{6}{2} = 3$

12. Use Structure Use the table shown below to describe the intervals over which $f(x) = 15x^2$ is increasing and decreasing.

x	$f(x) = 15x^2$	(<i>x</i> , <i>y</i>)
-2	60	(-2, 60)
-1	15	(-1, 15)
0	0	(0, 0)
1	15	(1, 15)
2	60	(2, 60)

- **13. Higher Order Thinking** Tell whether each statement about a function of the form $f(x) = ax^2$ is always true, sometimes true, or never true.
 - a. The graph is a parabola that opens upward.
 - **b.** The vertex of the graph is (0, 0).
 - **c.** The axis of symmetry of the graph is x = 0.

PRACTICE

How does the value of *a* in each function affect its graph when compared to the graph of the quadratic parent function? SEE EXAMPLES 1 AND 2

14. $g(x) = 6x^2$	15. $f(x) = 0.6x^2$
16. $f(x) = -7x^2$	17. $h(x) = -0.15x^2$
18. $C(x) = 0.04x^2$	19. $g(x) = 4.5x^2$

Over what interval is each function increasing and over what interval is each function decreasing? SEE EXAMPLE 3

20.	x	$f(x) = -0.3x^2$	(<i>x</i> , <i>y</i>)
	-2	-0.6	(-2, -0.6)
	-1	-0.3	(-1, -0.3)
	0	0	(0, 0)
	1	-0.3	(1, -0.3)
	2	-0.6	(2, -0.6)

21.	x	$f(x) = 13x^2$	(<i>x</i> , <i>y</i>)
	-2	52	(-2, 52)
	-1	13	(-1, 13)
	0	0	(0, 0)
	1	13	(1, 13)
	2	52	(2, 52)

Write a quadratic function for the area of each figure. Then find the area for the given value of *x*. SEE EXAMPLE 4

How do the average rates of change for each pair of functions compare over the given interval? SEE EXAMPLE 5

24. $f(x) = 0.1x^2$	25. $f(x) = -2x^2$
$g(x) = 0.3x^2$	$g(x) = -4x^2$
$1 \le x \le 4$	$-4 \le x \le -2$

PRACTICE & PROBLEM SOLVING

APPLY

26. Reason Some students can plant 9 carrots per square foot in the community garden shown. Write a function *f* that can be used to determine the number of carrots the students can plant. Give a reasonable domain for the function. How many carrots can the students plant in a garden that is square with 4-ft side lengths?

- 27. Make Sense and Persevere A burrito company uses the function $C(x) = 1.74x^2$ to calculate the number of calories in a tortilla with a diameter of x inches.
 - a. Find the average rates of change for the function over the intervals 6 < x < 8 and 9 < x < 11.
 - b. Interpret the average rates of change.
 - c. What does the difference in the average rates of change mean in terms of the situation?
- **28.** Reason An architect uses a computer program to design a skateboard ramp. The function $f(x) = ax^2$ represents the shape of the ramp's cross section. A portion of the design is shown. On the ramp, a person can skateboard from point A through point B and over to a point C. If point C is the same distance above the x-axis as point B, what are its coordinates? Explain.

ASSESSMENT PRACTICE

- **29.** The total cost, in dollars, of a square carpet can be determined by using $f(x) = 15x^2$, where x is the side length in yards. Which of the following are true? Select all that apply.
 - (a) The cost of a carpet increases and then decreases as the side length increases.
 - [®] The cost of the carpet is \$15 per square yard.
 - © The cost of a carpet with a side length of 3 yd is \$135.
 - Description The cost of a carpet with 6-ft sides is twice the cost of a carpet with 3-ft sides.
 - E The cost of a carpet increases at a constant rate as the side length increases.
- **30. SAT/ACT** The graph of $f(x) = ax^2$ opens downward and is narrower than the graph of the quadratic parent function. Which of the following could be the value of *a*?

A −2 B −0.5 C 0.5 D 1 E 2

31. Performance Task A manufacturer has two options for making cube-shaped boxes. The cost is calculated by multiplying the surface area of the box by the cost per square inch of the cardboard.

Part A Write a quadratic function of the form $f(x) = ax^2$ for each design that can be used to determine the total cardboard cost for cubes with any side length. Interpret the value of *a* in each function.

Part B How do the average rates of change for the designs compare for cubes with side lengths greater than 6 in., but less than 8 in.?

Part C Make a conjecture about the packaging costs for each design when the side length of the cube is greater than 36 in. Explain your conjecture.