UNDERSTAND

10. Generalize The graph of the parent quadratic function $f(x)=x^{2}$ and that of a second function of the form $g(x)=a x^{2}$ are shown. What conclusion can you make about the value of a in the equation of the second function?

11. Error Analysis Describe and correct the error a student made in finding the average rate of change for $f(x)=0.5 x^{2}$ over the interval $-4 \leq x \leq-2$.

Find the slope of the line that passes through $(-4,-8)$ and $(-2,-2)$.

$$
\frac{-2-(-8)}{-2-(-4)}=\frac{6}{2}=3
$$

12. Use Structure Use the table shown below to describe the intervals over which $f(x)=15 x^{2}$ is increasing and decreasing.

x	$f(x)=15 x^{2}$	(x, y)
-2	60	$(-2,60)$
-1	15	$(-1,15)$
0	0	$(0,0)$
1	15	$(1,15)$
2	60	$(2,60)$

13. Higher Order Thinking Tell whether each statement about a function of the form $f(x)=a x^{2}$ is always true, sometimes true, or never true.
a. The graph is a parabola that opens upward.
b. The vertex of the graph is $(0,0)$.
c. The axis of symmetry of the graph is $x=0$.

PRACTICE

How does the value of a in each function affect its graph when compared to the graph of the quadratic parent function? SEE EXAMPLES 1 AND 2
14. $g(x)=6 x^{2}$
15. $f(x)=0.6 x^{2}$
16. $f(x)=-7 x^{2}$
17. $h(x)=-0.15 x^{2}$
18. $C(x)=0.04 x^{2}$
19. $g(x)=4.5 x^{2}$

Over what interval is each function increasing and over what interval is each function decreasing?
SEE EXAMPLE 3
20.

x	$f(x)=-0.3 x^{2}$	(x, y)
-2	-0.6	$(-2,-0.6)$
-1	-0.3	$(-1,-0.3)$
0	0	$(0,0)$
1	-0.3	$(1,-0.3)$
2	-0.6	$(2,-0.6)$

21.

x	$f(x)=13 x^{2}$	(x, y)
-2	52	$(-2,52)$
-1	13	$(-1,13)$
0	0	$(0,0)$
1	13	$(1,13)$
2	52	$(2,52)$

Write a quadratic function for the area of each figure. Then find the area for the given value of x. See example 4
22. $x=13$
23. $x=2.5$

How do the average rates of change for each pair of functions compare over the given interval?
SEE EXAMPLE 5
24. $f(x)=0.1 x^{2}$
25. $f(x)=-2 x^{2}$
$g(x)=0.3 x^{2}$
$g(x)=-4 x^{2}$
$1 \leq x \leq 4$
$-4 \leq x \leq-2$

APPLY

26. Reason Some students can plant 9 carrots per square foot in the community garden shown. Write a function f that can be used to determine the number of carrots the students can plant. Give a reasonable domain for the function. How many carrots can the students plant in a garden that is square with 4 -ft side lengths?

27. Make Sense and Persevere A burrito company uses the function $C(x)=1.74 x^{2}$ to calculate the number of calories in a tortilla with a diameter of x inches.
a. Find the average rates of change for the function over the intervals $6<x<8$ and $9<x<11$.
b. Interpret the average rates of change.
c. What does the difference in the average rates of change mean in terms of the situation?
28. Reason An architect uses a computer program to design a skateboard ramp. The function $f(x)=a x^{2}$ represents the shape of the ramp's cross section. A portion of the design is shown. On the ramp, a person can skateboard from point A through point B and over to a point C. If point C is the same distance above the x-axis as point B, what are its coordinates? Explain.

ASSESSMENT PRACTICE

29. The total cost, in dollars, of a square carpet can be determined by using $f(x)=15 x^{2}$, where x is the side length in yards. Which of the following are true? Select all that apply.
(A) The cost of a carpet increases and then decreases as the side length increases.
(B) The cost of the carpet is $\$ 15$ per square yard.
© The cost of a carpet with a side length of 3 yd is $\$ 135$.
(D) The cost of a carpet with 6 - ft sides is twice the cost of a carpet with 3 -ft sides.
(E) The cost of a carpet increases at a constant rate as the side length increases.
30. SAT/ACT The graph of $f(x)=a x^{2}$ opens downward and is narrower than the graph of the quadratic parent function. Which of the following could be the value of a ?
(A) -2
(B) -0.5
(C) 0.5
(D) 1
(E) 2
31. Performance Task A manufacturer has two options for making cube-shaped boxes. The cost is calculated by multiplying the surface area of the box by the cost per square inch of the cardboard.

Part A Write a quadratic function of the form $f(x)=a x^{2}$ for each design that can be used to determine the total cardboard cost for cubes with any side length. Interpret the value of a in each function.

Part B How do the average rates of change for the designs compare for cubes with side lengths greater than 6 in., but less than 8 in.?

Part C Make a conjecture about the packaging costs for each design when the side length of the cube is greater than 36 in . Explain your conjecture.

