8-4 Reteach to Build Understanding

Modeling with Quadratic Functions

1. Match the phrase with the correct term of the vertical motion model.

$$
h(t)=-16 t^{2}+v_{0} t+h_{0}
$$

initial height gravitational constant initial velocity
2. In parts (a) and (b), determine which values are the initial height and the initial velocity of each scenario.
a. A ball is dropped from the top of 10 -foot tall bleachers at an initial velocity of $2 \mathrm{ft} / \mathrm{s}$. initial height \qquad initial velocity \qquad
b. A ball is kicked with an initial velocity of $9 \mathrm{ft} / \mathrm{s}$ from a height of 1 foot. initial height \qquad initial velocity \qquad
3. Kiyo is designing a rectangular garden with a $2-\mathrm{ft}$ wide path all the way around it. The length of the garden is 3 times as long as the width. Kiyo models the area of his garden and the path with the equation $f(x)=(x+2)(3 x+2)$. Explain Kiyo's error.
4. Compare two different quadratic models by completing the residuals tables below. Then determine the average residual and answer parts (a)-(c).

$$
g(x)=-3 x^{2}+5 x+8
$$

x	0	1	2	3	4
Actual Value	4	2	8	7	3
Predicted Value	8	10	6	-4	-20
Residual (Actual - Predicted)	-4	-8			

$$
h(x)=-2 x^{2}+7 x+4
$$

x	0	1	2	3	4
Actual Value	4	2	8	7	3
Predicted Value	4	9	10	7	0
Residual Actual - Predicted					

a. What is the average residual of $g(x)$?
b. What is the average residual?
c. Which equation more closely models the actual scenario? Explain.

