8-5 Additional Practice

Comparing Linear, Exponential, and Quadratic Models

Use a table to determine whether the function below is linear, quadratic, or exponential. Then, use regression to find the function that models the data.

I.			Differ		
	x	у	1st	2nd	Ratio
	0	7			
	1	28			
	2	49			
	3	70			
	4	90			

3.			Differe		
	x	у	1st	2nd	Ratio
	0	1			
	1	0.25			
	2	0.0625			
	3	0.0156			
	4	0.0039			

- 4. The data in the table represent the population of a town for the past five years. When the population reaches 100,000 the town can be reclassified as a city. Does this situation suggest a linear, exponential, or quadratic function model? Will the town be reclassified as a city in the next 8 years?
- 5. Consider linear, quadratic, and exponential functions.
 - a. What type of function would best model the area of a figure?
 - b. What type of function would best model the perimeter of a figure?
- 6. Compare the rates of change for f(x) = 2x + 4, $g(x) = 2x^2 + 4$, and $h(x) = 2^x$ over the interval x = 3 to x = 5. Which function has the greatest rate of change?

2.			Differ		
	x	y	1st	2nd	Ratio
	0	5			
	1	5			
	2	11			
	3	23			
	4	41			