PRACTICE & PROBLEM SOLVING

UNDERSTAND

- **12.** Communicate Precisely Consider the quadratic equation $x^2 + 2x 24 = 0$.
 - a. How could you solve the equation using a graph? Explain.
 - **b.** How could you solve the equation using a table? Explain.
- **13.** Generalize For an equation of the form $ax^2 + bx + c = 0$, where the graph crosses the *y*-axis once and does not intersect the *x*-axis. Describe the solution(s) of the equation.
- **14. Error Analysis** Describe and correct the error a student made in stating the number of solutions of a quadratic equation. Explain.

A quadratic equation has either two solutions or no solution.

- **15. Higher Order Thinking** Infinitely many quadratic equations of the form $ax^2 + bx + c = 0$ can have the same two solutions. Sketch the graphs of two quadratic functions on the same grid to show how this could be true.
- **16.** Communicate Precisely How many zeros does the function shown have? Explain.

17. Mathematical Connections If a quadratic function has a maximum value that is greater than 0, how many zeros does the function have? Explain.

Use each graph to find the solution of the related equation. SEE EXAMPLE 1

18.
$$x^2 - 2x + 2 = 0$$

PRACTICE

Solve each quadratic equation by graphing the related function. Round approximate solutions to the nearest tenth. SEE EXAMPLES 1 AND 3

20. $x^2 - 121 = 0$	21. $x^2 - 4x + 4 = 0$
22. $x^2 + 3x + 7 = 0$	23. $x^2 - 5x = 0$
24. $-x^2 + 6x + 7 = 0$	25. $-x^2 + 8x - 7 = 0$
26. $x^2 - 2 = 0$	27. $2x^2 - 11x + 12 = 0$
28. $-3x^2 + 5x + 7 = 0$	29. $-16x^2 + 70 = 0$

Find the solutions for each equation using a table. Round approximate solutions to the nearest tenth. SEE EXAMPLE 2

30. $x^2 - 16 = 0$	31. $x^2 + 8x + 16 = 0$
32. $x^2 + 3x + 1 = 0$	33. $x^2 + 4x + 6 = 0$

PRACTICE & PROBLEM SOLVING

APPLY

- 34. Model With Mathematics A small company shows the profits from their business with the function $P(x) = -0.01x^2 + 60x + 500$, where x is the number of units they sell and P is the profit in dollars.
 - a. How many units are sold by the company to earn the maximum profit?
 - **b.** How many units are sold when the company starts showing a loss?
- 35. Make Sense and Persevere A pattern of triangular numbers is shown. The first is 1, the second is 3, the third is 6, and so on.

The formula $0.5n^2 + 0.5n$ can be used to find the *n*th triangular number. Is 50 a triangular number? Explain.

36. Make Sense and Persevere The equation $-16x^2 + 10x + 15 = 0$ represents the height, in feet, of a flotation device above the water after x seconds. The linear term represents the initial velocity. The constant term represents the initial height.

- a. If the initial velocity is 0, when should the flotation device land in the water?
- **b.** If the initial height is 0, when does the flotation device land in the water?

ASSESSMENT PRACTICE

37. Does each quadratic equation have two solutions? Select Yes or No.

	Yes	No
$0 = 2x^2 + 1$		
$0=2x^2+5x+1$		
$0=2x^2+5x$		
$0=4x^2-4x+1$		
$0 = 4x^2 - 4x - 1$		

38. SAT/ACT What are the solutions of $x^2 + 2x - 15 = 0$ using the graph shown?

39. Performance Task A human catapult is used to launch a person into a lake. The height, in feet, of the person is modeled as shown, where x is the time in seconds from the launch.

Part A What equation can you use to find when the person touches the lake? Find the solution.

Part B Are your solutions the same for the equation and problem? Why or why not?

Part C What is the greatest height reached?

