PRACTICE & PROBLEM SOLVING

UNDERSTAND

- **15. Reason** One solution of a quadratic equation is 8. What do you know about the quadratic equation? What are two ways you would know if a quadratic equation could have this solution?
- **16. Communicate Precisely** Write a quadratic equation for each condition below. Explain your reasoning.
 - a. The equation has solutions that are opposites.
 - b. The equation has one solution.
- **17. Error Analysis** Describe and correct the error a student made in factoring.

- **18.** Make Sense and Persevere Explain how you would factor $2x^2 + 8x + 6 = 0$.
- **19. Higher Order Thinking** Both parabolas are graphs of quadratic functions.

- a. Write the factored form of the equation related to one of the functions. Which curve is related to your function?
- **b.** Use a constant factor to find the equation related to the other function.
- c. What relationship do you see between the two functions? How are these reflected in the constant?

PRACTICE

Solve each equation. SEE EXAMPLE 1

20. (x - 5)(x + 2) = 0 **21.** (2x - 5)(7x + 2) = 0 **22.** 3(x + 2)(x - 2) = 0**23.** $(3x - 8)^2 = 0$

Solve each equation by factoring.

SEE EXAMPLES 2 AND 3

24. $x^2 + 2x + 1 = 0$	25. $x^2 - 5x - 14 = 0$
26. $x^2 + 7x = 0$	27. $2x^2 - 5x + 2 = 0$
28. $2x^2 + 3x = 5$	29. $5x^2 + 16x = -3$

Write an equation to represent the shaded area. Then find the value of *x*. SEE EXAMPLE 3

30. Total area = 198 cm^2

Factor, find the coordinates of the vertex of the related function, then graph. SEE EXAMPLE 4

32. $x^2 - 2x - 63 = 0$ **33.** $x^2 + 16x + 63 = 0$

Write the factored form for the quadratic function. SEE EXAMPLE 5

APPLY

35. Mathematical Connections A streamer is launched 3 s after a fuse is lit and lands 8 s after it is lit.

- **a.** What is a quadratic equation in factored form that models the situation?
- **b.** What is the vertex of the function related to your equation? How does this compare with the vertex of the graph?
- **c.** What can you multiply your factored form by to get the function for the graph? Explain your answer.
- **36.** Use Structure A 15 ft long cable is connected from a hook to the top of a pole that has an unknown height. The distance from the hook to the base of the pole is 3 ft shorter than the height of the pole.

- **a.** What can you use to find the height of the pole?
- **b.** Write and solve a quadratic equation to find the height of the pole.
- **c.** How far is the hook from the base of the pole?

ASSESSMENT PRACTICE

37. Match each equation with one or more factors of its standard form.

1. x^{2}	$x^{2} + 6x = -8$	A. 2 <i>x</i> – 3
II. 2	$x^2 + x = 6$	B. <i>x</i> + 4
III. x^2	$x^{2} + 2x = 8$	C. <i>x</i> – 4
IV. 2x	$x^2 + 5x = 12$	D. <i>x</i> + 2
V. 2>	$x^2 - 11x = -12$	E. <i>x</i> – 2

- **38.** SAT/ACT A quadratic equation of the form $x^2 + bx + c = 0$ has a solution of -2. Its related function has a vertex at (2.5, -20.25). What is the other solution to the equation?
 - **ᢙ**−11
 - [®] −4.5
 - © 0.5
 - D 7
 - **E** 9
- **39.** Performance Task An engineer is designing a water fountain that starts 1 ft off of the edge of a 10 ft wide pool. The water from the fountain needs to project into the center of the pool. The path of the water from the fountain is in the shape of a parabola.

Part A Let the the point (1, 0) be the location of the starting point of the water. Write a quadratic equation to model the path of the water.

Part B What is the maximum height of the water? Use your equation from Part A.

Part C What is the equation for the path of the water if the maximum height of the water must be 4 ft?