UNDERSTAND

15. Reason One solution of a quadratic equation is 8 . What do you know about the quadratic equation? What are two ways you would know if a quadratic equation could have this solution?
16. Communicate Precisely Write a quadratic equation for each condition below. Explain your reasoning.
a. The equation has solutions that are opposites.
b. The equation has one solution.
17. Error Analysis Describe and correct the error a student made in factoring.

$$
\begin{gathered}
x^{2}+2 x-3=5 \\
(x-1)(x+3)=5 \\
x-1=5 \text { or } x+3=5 \\
x=6 \text { or } x=2
\end{gathered}
$$

18. Make Sense and Persevere Explain how you would factor $2 x^{2}+8 x+6=0$.
19. Higher Order Thinking Both parabolas are graphs of quadratic functions.

a. Write the factored form of the equation related to one of the functions. Which curve is related to your function?
b. Use a constant factor to find the equation related to the other function.
c. What relationship do you see between the two functions? How are these reflected in the constant?

PRACTICE

Solve each equation. SEE EXAMPLE 1
20. $(x-5)(x+2)=0$
21. $(2 x-5)(7 x+2)=0$
22. $3(x+2)(x-2)=0$
23. $(3 x-8)^{2}=0$

Solve each equation by factoring.

SEe EXAMPLES 2 AND 3
24. $x^{2}+2 x+1=0$
25. $x^{2}-5 x-14=0$
26. $x^{2}+7 x=0$
27. $2 x^{2}-5 x+2=0$
28. $2 x^{2}+3 x=5$
29. $5 x^{2}+16 x=-3$

Write an equation to represent the shaded area. Then find the value of x. see example 3
30. Total area $=198 \mathrm{~cm}^{2}$

31.

Factor, find the coordinates of the vertex of the related function, then graph. SEE EXAMPLE 4
32. $x^{2}-2 x-63=0$
33. $x^{2}+16 x+63=0$

Write the factored form for the quadratic function. SEE EXAMPLE 5
34.

APPLY

35. Mathematical Connections A streamer is launched 3 s after a fuse is lit and lands 8 s after it is lit.

a. What is a quadratic equation in factored form that models the situation?
b. What is the vertex of the function related to your equation? How does this compare with the vertex of the graph?
c. What can you multiply your factored form by to get the function for the graph? Explain your answer.
36. Use Structure A 15 ft long cable is connected from a hook to the top of a pole that has an unknown height. The distance from the hook to the base of the pole is 3 ft shorter than the height of the pole.

a. What can you use to find the height of the pole?
b. Write and solve a quadratic equation to find the height of the pole.
c. How far is the hook from the base of the pole?

ASSESSMENT PRACTICE

37. Match each equation with one or more factors of its standard form.
I. $x^{2}+6 x=-8$
A. $2 x-3$
II. $2 x^{2}+x=6$
B. $x+4$
III. $x^{2}+2 x=8$
C. $x-4$
IV. $2 x^{2}+5 x=12$
D. $x+2$
V. $2 x^{2}-11 x=-12$
E. $x-2$
38. SAT/ACT A quadratic equation of the form $x^{2}+b x+c=0$ has a solution of -2 . Its related function has a vertex at (2.5, -20.25). What is the other solution to the equation?
(A) -11
(B) -4.5
(C) 0.5
(D) 7
(E) 9
39. Performance Task An engineer is designing a water fountain that starts 1 ft off of the edge of a 10 ft wide pool. The water from the fountain needs to project into the center of the pool. The path of the water from the fountain is in the shape of a parabola.

Part A Let the the point $(1,0)$ be the location of the starting point of the water. Write a quadratic equation to model the path of the water.

Part B What is the maximum height of the water? Use your equation from Part A.

Part C What is the equation for the path of the water if the maximum height of the water must be 4 ft ?

