

Topic Review

P TOPIC ESSENTIAL QUESTION

1. How do you use quadratic equations to model situations and solve problems?

Vocabulary Review

Choose the correct term to complete each sentence.

- **2.** The _____ is $ax^2 + bx + c = 0$, where $a \neq 0$.
- **3.** The process of adding $\left(\frac{b}{2}\right)^2$ to $x^2 + bx$ to form a perfect-square trinomial is called ______.
- 4. The *x*-intercepts of the graph of the function are also called the
- 5. The ______ states that $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$, where both *a* and *b* are greater than or equal to 0.
- 6. The ______ states that for all real numbers a and b, if ab = 0, then either a = 0 or b = 0.

- completing the square
- discriminant
- Product Property of Square Roots
- quadratic equation
- quadratic formula
- standard form of a quadratic equation
- Zero-Product Property
- zeros of a function

Concepts & Skills Review

LESSON 9-1

Solving Quadratic Equations Using Graphs and Tables

Quick Review

A **quadratic equation** is an equation of the second degree. A quadratic equation can have 0, 1 or 2 solutions, which are known as the **zeros of the related function**.

Example

Find the solutions of $0 = x^2 + x - 2$. The *x*-intercepts of the related function are -2, and 1, so the equation has two real solutions.

From the graph, the solutions of the equation $x^2 + x - 2 = 0$ appear to be x = -2 and x = 1. It is important to verify those solutions by substituting into the equation. $(-2)^2 + (-2) - 2 = 0$ $1^2 + 1 - 2 = 0$ 0 = 0 0 = 0

Practice & Problem Solving

Solve each quadratic equation by graphing.

7. $x^2 - 16 = 0$	8. $x^2 - 6x + 9 = 0$
9. $x^2 + 2x + 8 = 0$	10. $2x^2 - 11x + 5 = 0$

Find the solutions for each equation using a table. Round to the nearest tenth.

- **11.** $x^2 64 = 0$ **12.** $x^2 6x 16 = 0$
- **13.** Model With Mathematics A video game company uses the profit model $P(x) = -x^2 + 14x - 39$, where x is the number of video games sold, in thousands, and P(x)is the profit earned in millions of dollars. How many video games would the company have to sell to earn a maximum profit? How many video games would the company have to sell to not show a profit?

LESSON 9-2

Solving Quadratic Equations by Factoring

Quick Review

The standard form of a quadratic equation is $ax^2 + bx + c = 0$, where $a \neq 0$. The Zero-Product **Property** states that for all real numbers *a* and *b*, if ab = 0, then either a = 0 or b = 0. The solutions of a quadratic equation can often be determined by factoring.

Example

How can you use factoring to solve $x^2 + 4x = 12$?

First write the equation in standard form.

 $x^2 + 4x - 12 = 0$

Then, rewrite the standard form of the equation in factored form.

(x-2)(x+6)=0

Use the Zero-Product Property. Set each factor equal to zero and solve.

$$x - 2 = 0$$
 or $x + 6 = 0$
 $x = 2$ $x = -6$

The solutions of $x^2 + 4x - 12 = 0$ are x = 2 and x = -6.

LESSON 9-3

Rewriting Radical Expressions

Quick Review

A radical expression in simplest form has no perfect square factors other than 1 in the radicand. The **Product Property of Square Roots** states that $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$, when $a \ge 0$ and $b \ge 0$.

Example

Write an expression for $5\sqrt{3x} \cdot 2\sqrt{12x^3}$ without any perfect squares in the radicand.

$$5\sqrt{3x} \cdot 2\sqrt{12x^3}$$
$$= 5 \cdot 2\sqrt{3x \cdot 12x^3}$$

Multiply the constants, and use the Product Property of Square Roots to multiply the radicands.

 $= 10\sqrt{36x^4}$ Simplify.

 $= 10 \cdot 6 \cdot x^2$ Simplify.

 $= 60x^{2}$

The expression $5\sqrt{3x} \cdot 2\sqrt{12x^3}$ is equivalent to $60x^2$.

Practice & Problem Solving

Solve each equation by factoring.

14. $x^2 + 6x + 9 = 0$	15. $x^2 - 3x - 10 = 0$
16. $x^2 - 12x = 0$	17. $2x^2 - 7x - 15 = 0$

Factor, find the coordinates of the vertex of the related function, and then graph it.

18. $x^2 - 12x + 20 = 0$ **19.** $x^2 - 8x + 15 = 0$

20. Error Analysis Describe and correct the error a student made in factoring.

$$2x^{2} - 8x + 8 = 0$$

$$2(x^{2} - 4x + 4) = 0$$

$$2(x - 2)(x - 2) = 0$$

$$x = -2$$

Practice & Problem Solving

Write an equivalent expression without a perfect square factor in the radicand.

- **21**. √420
- **22.** 4√84
- **23.** $\sqrt{35x} \cdot \sqrt{21x}$
- **24.** $\sqrt{32x^5} \cdot \sqrt{24x^7}$

Compare each pair of radical expressions.

- **25.** $2x^2\sqrt{21x}$ and $\sqrt{84x^5}$
- **26.** $3xy\sqrt{15xy^2}$ and $\sqrt{135x^4y^3}$
- 27. Model With Mathematics A person's walking speed in inches per second can be approximated using the expression $\sqrt{384\ell}$, where ℓ is the length of a person's leg in inches. Write the expression in simplified form. What is the walking speed of a person with a leg length of 31 in.

LESSON 9-4

Solving Quadratic Equations Using Square Roots

Quick Review

To solve a quadratic equation using square roots, isolate the variable and find the square root of both sides of the equation.

Example

Use the properties of equality to solve the quadratic equation $4x^2 - 7 = 57$.

Rewrite the equation in the form $x^2 = a$.

$$4x^2 - 7 = 57$$

 $4x^2 = 64$ Rewrite using the form $x^2 = a$, $x^2 = 16$ $\sqrt{x^2} = \sqrt{16}$ Take the square root of each side of the equation. $x = \pm 4$

Since 16 is perfect square, there are two integer answers. The solutions of the quadratic equation $4x^2 - 7 = 57$ are x = -4 and x = 4.

Practice & Problem Solving

Solve each equation by inspection.

- **28.** $x^2 = 289$ **29.** $x^2 = -36$
- **30**. $x^2 = 155$
- **31.** $x^2 = 0.64$

Solve each equation.

- **32.** $5x^2 = 320$
- **33.** $x^2 42 = 358$
- **34.** $4x^2 18 = 82$
- **35.** Higher Order Thinking Solve $(x 4)^2 81 = 0$. Explain the steps in your solution.
- **36.** Communicate Precisely Use the equation $d = \sqrt{(12 5)^2 + (8 3)^2}$ to calculate the distance between the points (3, 5) and (8, 12). What is the distance?

LESSON 9-5

Completing the Square

Quick Review

The process of adding $\left(\frac{b}{2}\right)^2$ to $x^2 + bx$ to form a perfect-square trinomial is called **completing the square**. This is useful for changing $ax^2 + bx + c$ to the form $a(x - h)^2 + k$.

Example

Find the solutions of $x^2 - 16x + 12 = 0$.

First, write the equation in the form $ax^2 + bx = d$. $x^2 - 16x = -12$

Complete the square.

$$b = -16, \text{ so } \left(\frac{-16}{2}\right)^2 = 64$$
$$x^2 - 16x + 64 = -12 + 64$$
$$x^2 - 16x + 64 = 52$$

Write the trinomial as a binomial squared.

$$(x-8)^2 = 52$$

Solve for *x*.

 $x = 8 + 2\sqrt{13}$

$$x - 8 = \sqrt{52}$$

 $x = 8 \pm 2\sqrt{13}$
and $x = 8 - 2\sqrt{13}$.

Practice & Problem Solving

Find the value of *c* that makes each expression a perfect-square trinomial. Then write the expression as a binomial squared.

37. $x^2 + 18x + c$ **38.** $x^2 - 6x + c$ **39.** $x^2 - 15x + c$ **40.** $x^2 + 24x + c$

Solve each equation by completing the square.

- **41.** $x^2 + 18x = 24$
- **42.** $x^2 10x = 46$
- **43.** $x^2 + 22x = -39$
- **44.** $3x^2 + 42x + 45 = 0$
- **45.** Construct Arguments To solve the equation $x^2 9x 15 = 0$, would you use graphing, factoring, or completing the square if you want exact solutions? Explain.

LESSON 9-6

Quick Review

The **quadratic formula**, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, gives solutions of quadratic equations in the form $ax^2 + bx + c = 0$ for real values of a, b, and c where $a \neq 0$. The quadratic formula is a useful method to find the solutions of quadratic equations that are not factorable.

The **discriminant** is the expression $b^2 - 4ac$, which indicates the number of solutions of the equation. The solutions of a quadratic equation are also called its **roots**, which are the input values when the related function's output value is zero.

If $b^2 - 4ac > 0$, there are 2 real solutions.

If $b^2 - 4ac = 0$, there is 1 real solution.

If $b^2 - 4ac < 0$, there are no real solutions.

Example

Use the quadratic formula to find the solutions of $x^2 - 9 = 5x$.

Write the equation in standard form $ax^{2} + bx + c = 0$ and identify *a*, *b* and *c*. $x^{2} - 5x - 9 = 0$

$$a = 1, b = -5, c = -9$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-5 \pm \sqrt{(-5)^2 - 4(1)(-9)}}{2(1)}$$

$$= \frac{5 \pm \sqrt{61}}{2}$$

$$x = \frac{5 \pm \sqrt{61}}{2} \approx 6.41 \text{ and}$$

$$= \frac{5 - \sqrt{61}}{2} \approx -1.41$$

The approximate solutions of $x^2 - 9 = 5x$ are $x \approx 6.41$ and $x \approx -1.41$.

Practice & Problem Solving

Solve each equation using the quadratic formula.

46. $2x^2 + 3x - 5 = 0$ **47.** $-5x^2 + 4x + 12 = 0$

$$40.202 + 60.1$$

48.
$$3x^2 + 6x - 1 = 4$$

49.
$$4x^2 + 12x + 6 = 0$$

Use the discriminant to determine the number of real solutions for each equation.

- **50.** $3x^2 8x + 2 = 0$
- **51.** $-4x^2 6x 1 = 0$
- **52.** $7x^2 + 14x + 7 = 0$
- **53.** $2x^2 + 5x + 3 = -5$
- 54. Error Analysis Describe and correct the error a student made in solving $3x^2 5x 8 = 0$.

$$a = 3, b = -5, c = 8$$
$$x = \frac{-5 \pm \sqrt{(-5)^2 - 4(3)(8)}}{2(3)}$$
$$= \frac{-5 \pm \sqrt{-71}}{6}$$

There are no real solutions.

55. Reason The function $f(x) = -5x^2 + 20x + 55$ models the height of a ball x seconds after it is thrown into the air. What are the possible values of the discriminant of the related equation? Explain.

Quick Review

A **linear-quadratic system** of equations includes a linear equation and a quadratic equation. The graph of the system of equations is a line and a parabola.

$$y = mx + b$$
$$y = ax^2 + bx + b$$

You can solve a linear-quadratic system of equations by graphing, elimination, or substitution.

С

Example

What are the solutions of the system of equations?

 $y = x^2 - 5x + 4$ y = x - 4

Graph the equations in the system on the same coordinate plane.

The solutions are where the parabola and the line intersect, which appear be at the points (2, -2) and (4, 0).

Check that the ordered pairs are solutions of the equations $y = x^2 - 5x + 4$ and y = x - 4.

 $\begin{array}{ll} -2 = (2)^2 - 5(2) + 4 & 0 = 4 - 4 \\ -2 = 4 - 10 + 4 & 0 = 0 \\ -2 = -2 & \text{and} \\ \text{and} & -2 = 2 - 4 \\ 0 = (4)^2 - 5(4) + 4 & -2 = -2 \\ 0 = 16 - 20 + 4 \\ 0 = 0 \\ \text{The solutions of the system are } (2, -2) \text{ and } (4, 0). \end{array}$

Practice & Problem Solving

Rewrite each equation as a system of equations, and then use a graph to solve.

56. $4x^2 = 2x - 5$ 57. $2x^2 + 3x = 2x + 1$ 58. $x^2 - 6x = 2x - 16$ 59. $0.5x^2 + 4x = -12 - 1.5x$

Find the solution(s) of each system of equations.

60.
$$y = x^{2} + 6x + 9$$

 $y = 3x$
61. $y = x^{2} + 8x + 30$
 $y = 5 - 2x$
62. $y = 3x^{2} + 2x + 1$
 $y = 2x + 1$

63.
$$y = 2x^2 + 5x - 30$$

$$y = 2x + 5$$

- **64.** Make Sense and Persevere Write an equation for a line that does not intersect the graph of the equation $y = x^2 + 6x + 9$.
- **65.** Reason A theater company uses the revenue function $R(x) = -50x^2 + 250x$, where x is the ticket price in dollars. The cost function of the production is C(x) = 450 50x. What ticket price is needed for the theater to break even?