Topic Review

TOPIC ESSENTIAL QUESTION

1. How do you use quadratic equations to model situations and solve problems?

Vocabulary Review

Choose the correct term to complete each sentence.
2. The \qquad is $a x^{2}+b x+c=0$, where $a \neq 0$.
3. The process of adding $\left(\frac{b}{2}\right)^{2}$ to $x^{2}+b x$ to form a perfect-square trinomial is called \qquad
4. The x-intercepts of the graph of the function are also called the
5. The \qquad states that $\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$, where both a and b are greater than or equal to 0 .
6. The \qquad states that for all real numbers a and b, if $a b=0$, then either $a=0$ or $b=0$.

- completing the square
- discriminant
- Product Property of Square Roots
- quadratic equation
- quadratic formula
- standard form of a quadratic equation
- Zero-Product Property
- zeros of a function

Concepts \& Skills Review

LESSON 9-1 Solving Quadratic Equations Using Graphs and Tables

Quick Review

A quadratic equation is an equation of the second degree. A quadratic equation can have 0 , 1 or 2 solutions, which are known as the zeros of the related function.

Example

Find the solutions of $0=x^{2}+x-2$.
The x-intercepts of the related function are -2 , and 1 , so the equation has two real solutions.

From the graph, the solutions of the
 equation $x^{2}+x-2=0$ appear to be $x=-2$ and $x=1$. It is important to verify those solutions by substituting into the equation.
$\begin{array}{rlrl}(-2)^{2}+(-2)-2 & =0 & 1^{2}+1-2 & =0 \\ 0 & =0 & 0 & =0\end{array}$

Practice \& Problem Solving

Solve each quadratic equation by graphing.
7. $x^{2}-16=0$
8. $x^{2}-6 x+9=0$
9. $x^{2}+2 x+8=0$
10. $2 x^{2}-11 x+5=0$

Find the solutions for each equation using a table. Round to the nearest tenth.
11. $x^{2}-64=0$
12. $x^{2}-6 x-16=0$
13. Model With Mathematics A video game company uses the profit model $P(x)=-x^{2}+14 x-39$, where x is the number of video games sold, in thousands, and $P(x)$ is the profit earned in millions of dollars.
How many video games would the company have to sell to earn a maximum profit? How many video games would the company have to sell to not show a profit?

LESSON 9-2 Solving Quadratic Equations by Factoring

Quick Review

The standard form of a quadratic equation is $a x^{2}+b x+c=0$, where $a \neq 0$. The Zero-Product Property states that for all real numbers a and b, if $a b=0$, then either $a=0$ or $b=0$. The solutions of a quadratic equation can often be determined by factoring.

Example

How can you use factoring to solve $x^{2}+4 x=12$?
First write the equation in standard form.
$x^{2}+4 x-12=0$
Then, rewrite the standard form of the equation in factored form.
$(x-2)(x+6)=0$
Use the Zero-Product Property. Set each factor equal to zero and solve.

$$
\begin{aligned}
& x-2=0 \\
& \text { or } \\
& x+6=0 \\
& x=2 \\
& x=-6
\end{aligned}
$$

The solutions of $x^{2}+4 x-12=0$ are $x=2$ and $x=-6$.

Practice \& Problem Solving

Solve each equation by factoring.

14. $x^{2}+6 x+9=0$
15. $x^{2}-3 x-10=0$
16. $x^{2}-12 x=0$
17. $2 x^{2}-7 x-15=0$

Factor, find the coordinates of the vertex of the related function, and then graph it.
$\begin{array}{ll}\text { 18. } x^{2}-12 x+20=0 & \text { 19. } x^{2}-8 x+15=0\end{array}$
20. Error Analysis Describe and correct the error a student made in factoring.

$$
\begin{aligned}
2 x^{2}-8 x+8 & =0 \\
2\left(x^{2}-4 x+4\right) & =0 \\
2(x-2)(x-2) & =0 \\
x & =-2
\end{aligned}
$$

LESSON 9-3 Rewriting Radical Expressions

Quick Review

A radical expression in simplest form has no perfect square factors other than 1 in the radicand. The Product Property of Square Roots states that $\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$, when $a \geq 0$ and $b \geq 0$.

Example

Write an expression for $5 \sqrt{3 x} \cdot 2 \sqrt{12 x^{3}}$ without any perfect squares in the radicand.
$5 \sqrt{3 x} \cdot 2 \sqrt{12 x^{3}} \cdots \cdots \cdots \cdots$ Multiply the constants, and use
$=5 \cdot 2 \sqrt{3 x \cdot 12 x^{3}}$
$=10 \sqrt{36 x^{4}} \cdots \quad$ Simplify .
$=10 \cdot 6 \cdot x^{2} \quad$ Simplify.
$=60 x^{2}$
The expression $5 \sqrt{3 x} \cdot 2 \sqrt{12 x^{3}}$ is equivalent to $60 x^{2}$.

Practice \& Problem Solving

Write an equivalent expression without a perfect square factor in the radicand.
21. $\sqrt{420}$
22. $4 \sqrt{84}$
23. $\sqrt{35 x} \cdot \sqrt{21 x}$
24. $\sqrt{32 x^{5}} \cdot \sqrt{24 x^{7}}$

Compare each pair of radical expressions.
25. $2 x^{2} \sqrt{21 x}$ and $\sqrt{84 x^{5}}$
26. $3 x y \sqrt{15 x y^{2}}$ and $\sqrt{135 x^{4} y^{3}}$
27. Model With Mathematics A person's walking speed in inches per second can be approximated using the expression $\sqrt{384 \ell}$, where ℓ is the length of a person's leg in inches. Write the expression in simplified form. What is the walking speed of a person with a leg length of 31 in .

LESSON 9-4 Solving Quadratic Equations Using Square Roots

Quick Review

To solve a quadratic equation using square roots, isolate the variable and find the square root of both sides of the equation.

Example

Use the properties of equality to solve the quadratic equation $4 x^{2}-7=57$.
Rewrite the equation in the form $x^{2}=a$.
$4 x^{2}-7=57$

$$
\begin{array}{rlrl}
4 x^{2} & =64 & & \text { Rewrite using the form } x^{2}=a, \\
x^{2} & =16 & & \text { where } a \text { is a real number. } \\
\sqrt{x^{2}} & =\sqrt{16} & & \\
x & = \pm 4 & & \text { Take the square root of each } \\
x i d e ~ o f ~ t h e ~ e q u a t i o n . ~
\end{array}
$$

Since 16 is perfect square, there are two integer answers. The solutions of the quadratic equation $4 x^{2}-7=57$ are $x=-4$ and $x=4$.

Practice \& Problem Solving

Solve each equation by inspection.
28. $x^{2}=289$
29. $x^{2}=-36$
30. $x^{2}=155$
31. $x^{2}=0.64$

Solve each equation.
32. $5 x^{2}=320$
33. $x^{2}-42=358$
34. $4 x^{2}-18=82$
35. Higher Order Thinking Solve $(x-4)^{2}-81=0$. Explain the steps in your solution.
36. Communicate Precisely Use the equation $d=\sqrt{(12-5)^{2}+(8-3)^{2}}$ to calculate the distance between the points $(3,5)$ and $(8,12)$. What is the distance?

LESSON 9-5 Completing the Square

Quick Review

The process of adding $\left(\frac{b}{2}\right)^{2}$ to $x^{2}+b x$ to form a perfect-square trinomial is called completing the square. This is useful for changing $a x^{2}+b x+c$ to the form $a(x-h)^{2}+k$.

Example

Find the solutions of $x^{2}-16 x+12=0$.
First, write the equation in the form $a x^{2}+b x=d$.

$$
x^{2}-16 x=-12
$$

Complete the square.
$b=-16$, so $\left(\frac{-16}{2}\right)^{2}=64$

$$
\begin{aligned}
& x^{2}-16 x+64=-12+64 \\
& x^{2}-16 x+64=52
\end{aligned}
$$

Write the trinomial as a binomial squared.

$$
(x-8)^{2}=52
$$

Solve for x.

$$
\begin{aligned}
x-8 & =\sqrt{52} \\
x & =8 \pm 2 \sqrt{13}
\end{aligned}
$$

$x=8+2 \sqrt{13}$ and $x=8-2 \sqrt{13}$.

Practice \& Problem Solving

Find the value of c that makes each expression a perfect-square trinomial. Then write the expression as a binomial squared.
37. $x^{2}+18 x+c$
38. $x^{2}-6 x+c$
39. $x^{2}-15 x+c$
40. $x^{2}+24 x+c$

Solve each equation by completing the square.
41. $x^{2}+18 x=24$
42. $x^{2}-10 x=46$
43. $x^{2}+22 x=-39$
44. $3 x^{2}+42 x+45=0$
45. Construct Arguments To solve the equation $x^{2}-9 x-15=0$, would you use graphing, factoring, or completing the square if you want exact solutions? Explain.

LESSON 9-6 The Quadratic Formula and the Discriminant

Quick Review

The quadratic formula, $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, gives solutions of quadratic equations in the form $a x^{2}+b x+c=0$ for real values of a, b, and c where $a \neq 0$. The quadratic formula is a useful method to find the solutions of quadratic equations that are not factorable.

The discriminant is the expression $b^{2}-4 a c$, which indicates the number of solutions of the equation. The solutions of a quadratic equation are also called its roots, which are the input values when the related function's output value is zero.

If $b^{2}-4 a c>0$, there are 2 real solutions.
If $b^{2}-4 a c=0$, there is 1 real solution.
If $b^{2}-4 a c<0$, there are no real solutions.

Example

Use the quadratic formula to find the solutions of $x^{2}-9=5 x$.

Write the equation in standard form
$a x^{2}+b x+c=0$ and identify a, b and c.
$x^{2}-5 x-9=0$

$$
\begin{aligned}
a & =1, b=-5, c=-9 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-5 \pm \sqrt{(-5)^{2}-4(1)(-9)}}{2(1)} \\
& =\frac{5 \pm \sqrt{61}}{2} \\
x & =\frac{5+\sqrt{61}}{2} \approx 6.41 \text { and } \\
& =\frac{5-\sqrt{61}}{2} \approx-1.41
\end{aligned}
$$

The approximate solutions of $x^{2}-9=5 x$ are $x \approx 6.41$ and $x \approx-1.41$.

Practice \& Problem Solving

Solve each equation using the quadratic

 formula.46. $2 x^{2}+3 x-5=0$
47. $-5 x^{2}+4 x+12=0$
48. $3 x^{2}+6 x-1=4$
49. $4 x^{2}+12 x+6=0$

Use the discriminant to determine the number of real solutions for each equation.
50. $3 x^{2}-8 x+2=0$
51. $-4 x^{2}-6 x-1=0$
52. $7 x^{2}+14 x+7=0$
53. $2 x^{2}+5 x+3=-5$
54. Error Analysis Describe and correct the error a student made in solving $3 x^{2}-5 x-8=0$.

$$
\begin{aligned}
a & =3, b=-5, c=8 \\
x & =\frac{-5 \pm \sqrt{(-5)^{2}-4(3)(8)}}{2(3)} \\
& =\frac{-5 \pm \sqrt{-71}}{6}
\end{aligned}
$$

There are no real solutions.
55. Reason The function $f(x)=-5 x^{2}+20 x+55$ models the height of a ball x seconds after it is thrown into the air. What are the possible values of the discriminant of the related equation? Explain.

LESSON 9-7 Solving Systems of Linear and Quadratic Equations

Quick Review

A linear-quadratic system of equations includes a linear equation and a quadratic equation. The graph of the system of equations is a line and a parabola.
$y=m x+b$
$y=a x^{2}+b x+c$
You can solve a linear-quadratic system of equations by graphing, elimination, or substitution.

Example
What are the solutions of the system of equations?
$y=x^{2}-5 x+4$
$y=x-4$
Graph the equations in the system on the same coordinate plane.

The solutions are where the parabola and the line intersect, which appear be at the points $(2,-2)$ and $(4,0)$.
Check that the ordered pairs are solutions of the equations $y=x^{2}-5 x+4$ and $y=x-4$.

$$
\begin{array}{rlrl}
-2 & =(2)^{2}-5(2)+4 & 0 & =4-4 \\
-2 & =4-10+4 & 0 & =0 \\
-2 & =-2 & & \text { and } \\
\text { and } & & -2=2-4 \\
0 & =(4)^{2}-5(4)+4 & -2=-2 \\
0 & =16-20+4 & & \\
0 & =0 & &
\end{array}
$$

The solutions of the system are $(2,-2)$ and $(4,0)$.

Practice \& Problem Solving

Rewrite each equation as a system of equations, and then use a graph to solve.
56. $4 x^{2}=2 x-5$
57. $2 x^{2}+3 x=2 x+1$
58. $x^{2}-6 x=2 x-16$
59. $0.5 x^{2}+4 x=-12-1.5 x$

Find the solution(s) of each system of equations.
60. $y=x^{2}+6 x+9$ $y=3 x$
61. $y=x^{2}+8 x+30$ $y=5-2 x$
62. $y=3 x^{2}+2 x+1$ $y=2 x+1$
63. $y=2 x^{2}+5 x-30$ $y=2 x+5$
64. Make Sense and Persevere Write an equation for a line that does not intersect the graph of the equation $y=x^{2}+6 x+9$.
65. Reason A theater company uses the revenue function $R(x)=-50 x^{2}+250 x$, where x is the ticket price in dollars. The cost function of the production is $C(x)=450-50 x$. What ticket price is needed for the theater to break even?

