PRACTICE & PROBLEM SOLVING

Additional Exercises Available Online

UNDERSTAND

- 9. Generalize Suppose square matrices A and B have dimensions $n \times n$, where n is a positive integer greater than or equal to 2. What are the dimensions of their product $A \times B$
- **10. Use Structure** If you wanted to find a product of the two matrices shown below, explain why it is necessary to write them in this order.

[10	15	101	[50]
	10	12 20]	14
Γ/		20]	[38]

11. Error Analysis Describe and correct the error a student made in mulitiplying matrix *A* by matrix *B*.

$$\begin{array}{ccc} A & B \\ \begin{pmatrix} 6 & 2 \\ -3 & 5 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 4 & -2 \end{pmatrix} \\ \begin{pmatrix} 6 & 2 \\ -3 & 5 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 4 & -2 \end{pmatrix} = \begin{pmatrix} -6 & 0 \\ -12 & -10 \end{pmatrix}$$

12. Higher Order Thinking The triangle shown is transformed using two matrices, $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, in that order.

- **a.** What transformation occurs as a result of multiplication by matrix *A*?
- **b.** What transformation occurs as a result of multiplication by matrix *B*?

PRACTICE

13. A math teacher assigns final grades based on a weighted system. Matrix W represents the weights of each type of assignment, and matrix G represents the grades for two students, Jacob and Lucy. Use matrix multiplication to find matrix F that represents the final class grades for these two students. SEE EXAMPLE 1

$W = \frac{hw}{[0.20]}$	tests 0.50	exam 0.30]
hw	Jacob [95	,
G = tests exam	[95 80 75	90 85_

Determine whether each equation is true for the following matrices. SEE EXAMPLE 2

$$A = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}, B = \begin{bmatrix} -4 & 0 \\ -1 & 8 \end{bmatrix}, C = \begin{bmatrix} 5 & 1 \\ 7 & -2 \end{bmatrix}$$

$$14. (A + B)C = AC + BC$$

$$15. \ A(BC) = (AB)C$$

16. Find IQ, if

	Г1	0	0]		۲ ₁	-3	2]	
/ =	0	1	0	and Q =	_4	5	-6	
	Lo	0	1]		6	-7	8]	
SEE E	XAI	MPL	E 3					

17. Create matrix *A* to represent the coordinates of quadrilateral *EFGH*.

b. Graph the quadrilateral represented by the resulting matrix, and describe the movement of the quadrilateral in the coordinate plane.

PRACTICE & PROBLEM SOLVING

18. Reason The following matrix represents the inventory of the three snack bars at a state park.

	fish taco	veggie burger	burger	chicken teriyaki
Snack Bar A	[20	15	7	11]
Snack Bar A Snack Bar B Snack Bar C	22	18	6	8
Snack Bar C	L15	19	10	5]

Use matrix multiplication to find the total value of the inventory for each snack bar.

- 19. Model With Mathematics Raul owns and operates two souvenir stands. At his baseball park stand, sweatshirts cost \$45 and T-shirts cost \$20. At his football stadium stand, sweatshirts cost \$50 and T-shirts cost \$15. Today Raul sold 20 sweatshirts and 25 T-shirts at each stand. Use matrix multiplication to find the total amount in daily sales at each souvenir stand.
- **20. Reason** A drama teacher assigns final grades in her class based on the weighted system shown below. The matrix *G* represents the grades for Kiyo and his two friends, Rachel and Leo.

$\begin{array}{c} \text{tests} \\ G = \text{proj} \\ \text{part} \\ 98 \end{array}$	Rachel 83 88 94	78 96	Drama Syllabus Tests 45% Projects 30% Participation 25%
---	--------------------------	----------	--

- **a.** Write matrix W as a 1 \times 3 matrix to represent the weighted grading system.
- **b.** Perform matrix multiplication to find the final grades for each of the three students.

ASSESSMENT PRACTICE

21. Find the product of the two matrices.

22. SAT/ACT Select the undefined matrix product.

$A\begin{bmatrix}1\\3\end{bmatrix}$	$ \begin{bmatrix} 2 \\ 6 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix} $			$ B \begin{bmatrix} 1 \\ 2 \end{bmatrix} $	4 _1][2] 5]	
© [2 2		1 0	-1 -4]		-2 3	-1][1 0][1	-1 0]

Practice

Mixed Review Available Online

(U) Tutorial

23. Performance Task Paula has a candle-making business. The candles come in four different types. The cost of making each type of candle is \$0.50, \$1, \$5, and \$7, in order of size. Paula's candle sales for her first three years of business are shown in the table below.

	Tea \$1	Floating \$2	Jar \$12	Pillar \$15
Year 1	20	15	40	30
Year 2	25	20	50	35
Year 3	15	20	60	45

Part A Write matrix C as a 4×1 matrix to represent the cost of making each type of candle, write matrix P as a 4×1 matrix to represent the selling price of each candle, and write matrix S as a 3×4 matrix to represent Paula's candle sales for the first three years.

Part B Use matrix subtraction to find a matrix, *X*, that represents the amount of profit that Paula makes per candle.

Part C Use matrix multiplication to find the product of matrices *S* and *X*. Explain what the elements of this product represent.