10-3 Additional Practice

Write each vector in component form. Identify its magnitude and direction.

1. initial point $(4,6)$; terminal point $(-2,3)$
2. initial point $(-5,8)$; terminal point $(4,-1)$

Add each vector pair.
3. $\overrightarrow{M N}=\langle 10,5\rangle$ and $\overrightarrow{N O}=\langle-2,5\rangle$
4. $\overrightarrow{M N}=\langle-3,7\rangle$ and $\overrightarrow{N O}=\langle-1,-2\rangle$

Find the components, magnitude, and direction of $\vec{s}-\vec{t}$ for each given vector pair. Round to the nearest hundredth.
5. $\vec{s}=\langle 2,-6\rangle, \vec{t}=\langle-1,4\rangle$
6. $\vec{s}=\langle 4,7\rangle, \vec{t}=\langle 0,-1\rangle$

Multiply each vector by the given scalar. Find the components, magnitude, and direction. Round to the nearest hundredth.
7. $\vec{t}=\langle 2,3\rangle$ scalar $=8$
8. $\vec{t}=\langle-4,8\rangle$ scalar $=6$
9. Reflect $\overrightarrow{E F}=\langle 5,3\rangle$ across the x-axis using a matrix.
10. Reflect $\overrightarrow{G H}=\langle 2,1\rangle$ across the y-axis using matrices.
11. Emelia is paddling a kayak in the ocean at 5 mph headed 20° north of west. The current of the ocean is 3 mph at a direction that is 20° east of south. What are the magnitude and direction of the path of her kayak as she paddles across the ocean?
12. Describe how the magnitude and the direction of $\vec{t}=\langle x, y\rangle$ is affected when \vec{t} is multiplied by a scalar of z. a scalar of $-z$?

