Name _

10-3 Reteach to Build Understanding

Vectors

1. Given vectors $\vec{s} = \langle 2, 4 \rangle$ and $\vec{t} = \langle 3, 5 \rangle$, complete the table to calculate the difference, directional difference, and magnitude.

	$\vec{s} = \langle x, y \rangle$ $\vec{t} = \langle x, y \rangle$	$\vec{s} - \vec{t}$	Directional Difference	Magnitude
Algebra	$\vec{s} = \langle x_1, y_1 \rangle$ $\vec{t} = \langle x_2, y_2 \rangle$	$\langle x_1 - x_2, y_1 - y_2 \rangle$	$\theta = \tan^{-1} \frac{(y_1 - y_2)}{(x_1 - x_2)}$	$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
Numbers	$\vec{s} = \langle _, _ \rangle$ $\vec{t} = \langle _, _ \rangle$	⟨2 − 3, 4 − 5⟩ ⟨−_, −_⟩	$\theta = \tan^{-1} \frac{(4-5)}{(2-3)}$ = $\tan^{-1} \frac{(-1)}{(-1)}$ $\tan^{-1} 1 = _$	$\frac{\sqrt{(2-3)^2 + (4-5)^2}}{\sqrt{(-1)^2 + (-1)^2}}$ $\frac{\sqrt{1+1}}{\sqrt{1+1}} = \sqrt{-1}$

2. Inés determined that the direction of $\vec{r} = \langle -2, 4 \rangle$ is approximately 27°. What errors did she make? What is the direction of \vec{r} ?

 $\theta = \tan^{-1}\left(\frac{-2}{4}\right)$

 $\theta = \tan^{-1}\left(\frac{1}{2}\right)$

 $\theta pprox 27^\circ$

3. Suppose $\vec{v} = \langle 4, -6 \rangle$, and \vec{v} is multiplied by a scalar of 4. Write the component form, magnitude, and direction of the resultant vector.

Component Form:

$$4 \cdot \vec{v} = 4 \cdot \langle 4, -6 \rangle = \langle __ \cdot 4, 4 \cdot (-__) \rangle = \langle __, -__ \rangle$$

Magnitude:

$$4|\vec{v}| = \sqrt{(4)^2 + (-6)^2} = \sqrt{16 + 36} = 4\sqrt{2} \approx (7.2) \approx 2$$

Direction:

$$\theta = \tan^{-1} \left(-\frac{24}{16} \right)$$
$$\theta = \tan^{-1} \left(-\frac{3}{2} \right)$$
$$\theta \approx _$$