PearsonRealize.com

10-4 Reteach to Build Understanding

Inverses and Determinants

1. Find the inverse of $A = \begin{bmatrix} 2 & 4 \\ 3 & 0 \end{bmatrix}$.

If you multiply a 2 × 2 matrix by its inverse, the result is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Suppose the inverse for matrix $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ is a matrix $\begin{bmatrix} w & x \\ y & z \end{bmatrix}$. The equation is

- $\begin{bmatrix} a & c \\ b & d \end{bmatrix} \cdot \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} aw + cy & ax + cz \\ bw + dy & bx + dz \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- a. Use the equations to solve for the value of w, x, y, and z.

Equations (see above)	Write out with known numbers.	Simplify the equations.	Solution
bw + dy	3w + y = 0	3w = 0 Divide each side by 3.	w = 0
aw + cy	w + 4y = 1	2w + y = 1 Substitute 0 for w. 2(0) + 4y = 1 y = 1 Divide each side by 4.	$y = \frac{1}{4}$
bx + dz	3x + 0z = 1	x = 1 Divide each side by 3.	$x=\frac{1}{3}$
ax + cz	$_x + 4z = 0$	$2x + _z = 0$ Substitute $\frac{1}{3}$ for x. $2(\) + 4z = 0$ $\frac{2}{3} + 4z = 0$ Subtract $\frac{2}{3}$ from each side. $4z = -\frac{2}{3}$ Divide each side by 4.	$z = -\frac{2}{12} = -\frac{1}{6}$

- **b.** Complete the matrix for the inverse: $A^{-1} = \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} & \end{bmatrix}$
- **2.** Enrique solved for the determinant of $B = \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix}$ as shown. What error did he make? What is the correct answer?

3(5) + 2(4) = ?15 + 8 = 23