10-4 Reteach to Build Understanding

Inverses and Determinants

1. Find the inverse of $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 0\end{array}\right]$.

If you multiply a 2×2 matrix by its inverse, the result is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Suppose the inverse for matrix $\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ is a matrix $\left[\begin{array}{cc}w & x \\ y & z\end{array}\right]$.
The equation is

$$
\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \cdot\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
a w+c y & a x+c z \\
b w+d y & b x+d z
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

a. Use the equations to solve for the value of w, x, y, and z.

Equations (see above)	Write out with known numbers.	Simplify the equations.	Solution
$b w+d y$	$3 w+_y=0$	$3 w=0$ Divide each side by 3.	$w=0$
$a w+c y$	$-w+4 y=1$	$2 w+\ldots y=1$ Substitute 0 for w. $2(0)+4 y=1$ $y=1$	$y=\frac{1}{4}$
$b x+d z$	$3 x+0 z=1$	Divide each side by 4.	
$a x+c z$	$-x+4 z=0$	$x=1$ Divide each side by 3.	$x=\frac{1}{3}$$2 x=0$ Substitute $\frac{1}{3}$ for x. 2()$+4 z=0$ $\frac{2}{3}+4 z=0$

b. Complete the matrix for the inverse: $A^{-1}=\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]=\left[\begin{array}{ll}- & - \\ & \end{array}\right]$
2. Enrique solved for the determinant of $B=\left[\begin{array}{ll}3 & 2 \\ 4 & 5\end{array}\right]$ as shown.

What error did he make? What is the correct answer?

$$
\begin{aligned}
3(5)+2(4) & =? \\
15+8 & =23
\end{aligned}
$$

