торіс **10**

Topic Review

? TOPIC ESSENTIAL QUESTION

1. How can you use matrices to help you solve problems?

Vocabulary Review

Choose the correct term to complete each sentence.

- 2. The _____ has one column that represents all the variables in the system of equations.
- **3.** The ______ is a square matrix with ones on the main diagonal and zeros for all other elements.
- **4.** _____ means the multiplication of each element of a matrix by a single real number.
- 5. The ______ is the length of the vector.
- 6. The product of a matrix and its ______ is the identity matrix.
- 7. The ______ has one column that contains the constants from the right-hand side of the system of equations.
- 8. A(n) _____ is a matrix that has the same number of rows as columns.

- constant matrix
- identity matrix
- inverse matrix
- magnitude
- scalar multiplication
- square matrix
- variable matrix
- vector
- zero matrix

Concepts & Skills Review

LESSON 10-1

Operations With Matrices

Quick Review

To multiply a matrix by a scalar, multiply each element in the matrix by the scalar.

To add (or subtract) matrices, add (or subtract) the corresponding elements.

Example

Add matrices A and B.

 $A = \begin{bmatrix} 9 & 2 & 11 \\ -3 & 5 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & -1 & 7 \\ 8 & 12 & 0 \end{bmatrix}$

Add corresponding elements of the two matrices.

$$A + B = \begin{bmatrix} 9 & 2 & 11 \\ -3 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 4 & -1 & 7 \\ 8 & 12 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 9 + 4 & 2 + (-1) & 11 + 7 \\ -3 + 8 & 5 + 12 & 6 + 0 \end{bmatrix}$$
$$= \begin{bmatrix} 13 & 1 & 18 \\ 5 & 17 & 6 \end{bmatrix}$$

Practice & Problem Solving

Given matrices C =	[9 3	-5 6	and D =	[-7 8	1 2	,

calculate each of the following.

- **9.** *D* C **10.** 5*D*
- **11.** A segment has endpoints A(5, -3) and B(2, 4). Use matrices to represent a translation of \overline{AB} to \overline{YZ} by 3 units right and 7 units down. What are the coordinates of Y and Z?
- **12.** Communicate Precisely Suppose N is a 3×3 matrix. Explain how to find matrix P so that N + P is the zero matrix.
- Make Sense and Persevere A seminar has 6 women and 8 men register early. Then 18 women and 12 men register in class. Use matrix addition to find the total number of men and women in the seminar.

LESSON 10-2

Quick Review

The product of two matrices is a new matrix with the sums of the products of corresponding row and column elements.

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{bmatrix}$

For an $n \times n$ matrix A, the multiplicative **identity matrix** *I* is an $n \times n$ square matrix with 1s on the main diagonal and 0s for all other elements: AI = IA = A.

Example

Multiply matrices A and B.

$$A = \begin{bmatrix} 3 & -2 \\ 1 & -4 \end{bmatrix} \quad B = \begin{bmatrix} -1 & 6 \\ 0 & 5 \end{bmatrix}$$

Find the sums of products of corresponding row and column elements.

$$AB = \begin{bmatrix} 3 & -2 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} -1 & 6 \\ 0 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} (3)(-1) + (-2)(0) & (3)(6) + (-2)(5) \\ (1)(-1) + (-4)(0) & (1)(6) + (-4)(5) \end{bmatrix}$$
$$= \begin{bmatrix} -3 & 8 \\ -1 & -14 \end{bmatrix}$$

LESSON 10-3

Vectors

Quick Review

For vectors $\vec{u} = \langle a, b \rangle$ and $\vec{v} = \langle c, d \rangle$, the magnitude of \vec{u} is $|\vec{u}| = \sqrt{a^2 + b^2}$, and the direction of \vec{u} is $\theta = \tan^{-1}(\frac{b}{2})$.

For a scalar $k, k \cdot \vec{u} = \langle k \cdot a, k \cdot b \rangle, |k \cdot \vec{u}| = |k| \cdot |\vec{u}|.$ $\vec{u} + \vec{v} = \langle a + c, b + d \rangle$ and $\vec{u} - \vec{v} = \vec{u} + (-\vec{v}) = \langle a - c, b - d \rangle.$

Example

Add vectors $\overrightarrow{AB} = \langle 6, -2 \rangle$ and $\overrightarrow{CD} = \langle 3, 7 \rangle$. $\overrightarrow{AB} + \overrightarrow{CD} = \langle 6, -2 \rangle + \langle 3, 7 \rangle$ $= \langle 6 + 3, -2 + 7 \rangle$ $=\langle 9, 5 \rangle$

Practice & Problem Solving

Given matrices $A = \begin{bmatrix} 4 & -3 \\ 0 & 9 \end{bmatrix}$, $B = \begin{bmatrix} -7 & 8 \\ -5 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} 6 & -1 \\ 2 & -2 \end{bmatrix}$, find each of the following. 16. BC 14. AB **15**. AC 17. BA 18. CA **19.** CB

20. Represent the coordinates of the triangle as a matrix. Then multiply by $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ to find the coordinates of the image of triangle

ABC after a reflection across the x-axis.

- 21. Look for Relationships Explain how to determine whether two matrices can be multiplied.
- 22. Make Sense and Persevere At Store X, Television A costs \$800 and Television B costs \$500. At Store Y, Television A costs \$750 and Television B costs \$550. Last month, each store sold 25 of Television A and 20 of Television B. Write and solve a matrix equation to find the total amount in sales at each store.

Practice & Problem Solving

Add and subtract each vector pair.

- **23.** $\overrightarrow{AB} = \langle 8, 10 \rangle$ and $\overrightarrow{CD} = \langle -3, 2 \rangle$
- **24.** $\overrightarrow{RS} = \langle -7, 9 \rangle$ and $\overrightarrow{TU} = \langle 11, -5 \rangle$
- **25.** Multiply the vector $\vec{t} = \langle 13, -3 \rangle$ by the scalar 4.
- 26. Communicate Precisely Describe how $\overline{MN} = \langle -2, 9 \rangle$ is transformed when it is multiplied by the matrix $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
- 27. Reason A blimp flying due 80 north is pushed off course by a crosswind blowing west. By how many degrees did the crosswind change the blimp's (0, 0) location original course?

100

original

LESSON 10-4

Inverses and Determinants

Quick Review

The determinant of a $\mathbf{2} \times \mathbf{2}$ matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is denoted det A and is equal to ad - bc.

The inverse matrix is $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Example

Find the inverse of matrix $A = \begin{bmatrix} 4 & 8 \\ 2 & 6 \end{bmatrix}$.

 $\det A = ad - bc = (4)(6) - (2)(8) = 24 - 16 = 8$

Because the determinant does not equal 0, there is an inverse.

$A^{-1} = \frac{1}{8} \begin{bmatrix} 6\\ -2 \end{bmatrix}$	$\begin{bmatrix} -8\\4 \end{bmatrix} =$	$\begin{bmatrix} \frac{3}{4}\\ -\frac{1}{4}\end{bmatrix}$	-1 $\frac{1}{2}$	
		L 7	2 1	

Practice & Problem Solving

Find the determinant of each matrix.

20	[12	-6]	20	[14	-3]
20.	8	-3]	23.	2	0

Does each given matrix have an inverse? If so, find it.

	гэ	1 1			3	2	L
30. <i>A</i> =		-1	31. <i>B</i> =	-2	-4	0	
	ι4	IJ		_1	-3	5	

32. Error Analysis Carla said the inverse of

matrix
$$A = \begin{bmatrix} 8 & 2 \\ 2 & 1 \end{bmatrix}$$
 is $\begin{bmatrix} 2 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} \end{bmatrix}$. Describe and

correct Carla's error.

33. Use Structure Find the area of the triangle defined by vectors $\langle 8, 6 \rangle$ and $\langle 2, -4 \rangle$.

LESSON 10-5

Inverse Matrices and Systems of Equations

Quick Review

Matrices can be used to solve systems of equations.

The coefficient matrix has rows which contain the coefficients from a single equation. Each column contains all coefficients of a single variable.

The **variable matrix** has one column that represents all the variables in the system of equations.

The constant values from the right-hand side of the equations are used to make the **constant matrix**.

ax + by + cz = k	a	b	с]	г х -	1	[<i>k</i>]
$dx + ey + fz = m \Rightarrow$	d	е	f	•	y y	=	m
gx + hy + jz = n	g	h	j_		Lz.		

Example

Solve the system of equations $\begin{cases} 3x + 6y = 0\\ -2x + 3y = -7 \end{cases}$ using matrices.

$$3x + 6y = 0$$

$$-2x + 3y = -7$$

$$\begin{bmatrix} 3 & 6 \\ -2 & 3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 3 & 6 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ -2 & 3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 0 \\ -7 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & -\frac{2}{7} \\ \frac{2}{21} & \frac{1}{7} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -7 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

TOPIC 10 REVIEW

Practice & Problem Solving

Solve the following systems of equations using inverse matrices. (-2x + 3y + 3z - 6)

34.
$$\begin{cases} 2x + 4y = 4 \\ -3x - 7y = -4 \end{cases}$$
35.
$$\begin{cases} -2x + 3y + 3z = 0 \\ 6x - 8y - 2z = -4 \\ 2x - 2y - 3z = -13 \end{cases}$$

36. Communicate Precisely Explain how to write a system of equations given the matrix

equation
$$\begin{bmatrix} 4 & 9 & 1 \\ 8 & -2 & 0 \\ -7 & 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 10 \\ 6 \end{bmatrix}.$$

37. Reason Two students visited the school store to buy supplies for the school year. One student purchased 8 folders and 6 notebooks for a total price of \$38. The other student purchased 2 folders and 9 notebooks for a total of \$47. If each folder is the same price and each notebook is the same price, how much does each folder and each notebook cost?