1-3 Reteach to Build Understanding

Piecewise-Defined Functions

A piecewise-defined function has different rules for different parts, or pieces, of its domain. In order to evaluate a piecewise-defined function for a given value of x, find the interval, or piece, that x belongs to. Find the corresponding definition of the function for that interval.

1. Given the function
$f(x)=\left\{\begin{aligned} 3 & -5 \leq x<-2 \\ x-2 & -2 \leq x \leq 0\end{aligned}\right.$
Solve the piecewise-defined functions for the values listed. Use the equations shown for each group.
Use $f(x)=3$
$-5 \leq x<-2$ to solve a - c.
a. $f(-5)=3$
b. $f(-4)=$
c. $f(-3)=$
Use $f(x)=x-2$
$-2<x<0$ to solve $d-f$.
d. $f(-2)=$
e. $f(-1)=-3$
f. $f(0)=$
2. Deon graphed the piecewise-defined function. Explain what mistake he made and how he should fix it.
$f(x)=\left\{\begin{array}{cl}4 & -4<x<-2 \\ 2 x-4 & -1<x<2 \\ 3 x & 2 \leq x<5\end{array}\right.$

3. Use the piecewise-defined function to fill in the blanks with the correct answer.

$$
f(x)=\left\{\begin{array}{cc}
4 & -4<x<-2 \\
2 x-4 & -1<x<2 \\
3 x & 2 \leq x<5
\end{array}\right.
$$

a. The domain
b. The equation
is used when graphing the function $f(x)=2 x-4$. is used to find $f(x)=15$.

