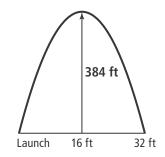
2-1 Additional Practice

Vertex Form of a Quadratic Function

Graph each function. Describe how it was translated from $f(x) = x^2$.

1. $f(x) = x^2 + 4$ **2.** $f(x) = (x - 3)^2$ **3.** $f(x) = (x + 2)^2 - 1$


Identify the vertex, axis of symmetry, the maximum or minimum value, and the domain and the range of each function.

4. $y = (x - 2)^2 + 3$ **5.** $f(x) = -0.2(x + 3)^2 + 2$ **6.** $y = (x + 4)^2 - 1$

Write the equation of each parabola in vertex form.

7 . vertex (3, –2),	8. vertex (-4, -24),	9. vertex (–12.5, 35.5),
point (2, 3)	point (–5, –25)	point (1, 400)

- **10.** Given the function $f(x) = x^2$, Write the equation function g(x) whose graph is a translation 5 units left and 3 units down.
- 11. The diagram shows the path of a model rocket launched from the ground. It reaches a maximum altitude of 384 ft when it is above a location 16 ft from the launch site. What quadratic function models the height of the rocket?

