UNDERSTAND

10. Generalize Can you write the equation of a quadratic function knowing its zeros and its non-zero y-intercept? If so, describe the process. If not, explain why.
11. Error Analysis Describe and correct the error a student made in solving a quadratic equation.

$$
\begin{aligned}
& 0=2 x^{2}+7 x+5 \\
& 0=2 x^{2}+2 x+5 x+5 \\
& 0=2 x(x+1)+5(x+1) \\
& 0=2 x, 0=x+1,0 \neq 5 \\
& 0=x,-1=x
\end{aligned}
$$

12. Model With Mathematics Use the graph of the function to write the equation in factored form.

13. Generalize For what values of x is the expression $(x-4)^{2}>0$?
14. Error Analysis A student says that the zeros of $y=(x-2)(x+7)$ are -2 and 7 . Is the student correct? If not, describe and correct the error the student made.
15. Construct Arguments Explain why $x^{2}+25$ is not equal to $(x+5)^{2}$.
16. Mathematical Connections Describe how factoring can help you find the x-intercepts of the graph of the quadratic function $y=x^{2}-4 x+3$.

PRACTICE

Factor each quadratic expression. See example 1
17. $x^{2}-3 x-10$
18. $3 x^{2}-5 x-12$
19. $x^{2}+15 x+56$
20. $2 x^{2}+7 x-15$
21. $3 x^{2}-18 x-48$
22. $4 x^{2}-11 x-3$
23. What are the zeros of the quadratic function $y=3(x-5)(x+4)$? SEE EXAMPLE 2

Solve each quadratic equation. SEE EXAMPLE 3
24. $x^{2}-5 x-14=0$
25. $x^{2}=5 x-6$
26. $3 x^{2}-60=3 x$
27. $5 x^{2}+12 x=9$
28. $4 x^{2}+3 x-7=0$
29. $6 x^{2}=5 x+6$
30. A penny is dropped from the top of a new building. Its height in feet can be modeled by the equation $y=256-16 x^{2}$, where x is the time in seconds since the penny was dropped. How long does it take for the penny to reach the ground? SEE EXAMPLE 4

Identify the interval(s) on which each quadratic function is positive. SEe EXAMPLE 5
31. $y=x^{2}+9 x+18$
32. $y=x^{2}+2 x-8$
33. $y=x^{2}-5 x-24$
34. $y=-x^{2}+4 x+12$
35. $y=2 x^{2}+12 x+18$
36. $y=5 x^{2}-3 x-8$

Write an equation for each parabola. see example 6
37. A parabola with x-intercepts at $(-1,0)$ and $(3,0)$ which passes through the point $(1,-8)$
38. A parabola with x-intercepts at 0 and 1 and which passes through the point $(2,-2)$
39. A snorkeler dives for a shell on a reef. After entering the water, the diver descends $\frac{11}{3} \mathrm{ft}$ in one second. Write an equation that models the diver's position with respect to time.

APPLY

40. Make Sense and Persevere Rectangular apartments are 12 ft longer than they are wide. Each apartment has $1,053 \mathrm{ft}^{2}$ of floor space. What are the dimensions of an apartment? Explain.
41. Use Structure The height of a drone, in meters, above its launching platform that is 5 m above the ground, is modeled by $y=0.1 x^{2}-1.5 x+5$, where x is the time in seconds. The drone leaves the launch pad, flies down into a canyon, and then it flies back up again.

a. What is the factored form of the equation for the height of the drone?
b. After how many seconds will the drone be at ground level?
c. After how many seconds will the drone come back to the height of its platform?
42. Higher Order Thinking LaTanya is designing a rectangular garden with a uniform walkway around its border. LaTanya has $140 \mathrm{~m}^{2}$ of material to build the walkway.
a. Write an equation for the dimensions of the garden and the surrounding walkway.
b. How wide is the walkway? Explain.

ASSESSMENT PRACTICE

43. Which of the following are solutions to the equation $-11 x=2 x^{2}+15$? Select all that apply.
(A) -5
(D) $\frac{5}{2}$
(B) -3
(E) 3
(C) $-\frac{5}{2}$
(E) 5
44. SAT/ACT What is the sum of the zeros of the function $y=x^{2}-9 x-10$?
(A) -10
(B) -9
© 0
(D) 9
(E) 10
45. Performance Task A pumpkin is launched from the ground into the air and lands 4.5 s later.

Part A Write a quadratic function that models the height, in feet, of the pumpkin x seconds after it is launched. Explain how you found the function.

Part B A second pumpkin is launched from the ground. After 1 second, it is 64 feet high. The pumpkin lands after 5 seconds. What is the maximum height of the pumpkin? Explain.

