PRACTICE & PROBLEM SOLVING

UNDERSTAND

- **10.** Generalize Can you write the equation of a quadratic function knowing its zeros and its non-zero *y*-intercept? If so, describe the process. If not, explain why.
- **11. Error Analysis** Describe and correct the error a student made in solving a quadratic equation.

$$0 = 2x^{2} + 7x + 5$$

$$0 = 2x^{2} + 2x + 5x + 5$$

$$0 = 2x(x + 1) + 5(x + 1)$$

$$0 = 2x, 0 = x + 1, 0 \neq 5$$

$$0 = x, -1 = x$$

12. Model With Mathematics Use the graph of the function to write the equation in factored form.

- **13.** Generalize For what values of x is the expression $(x 4)^2 > 0$?
- 14. Error Analysis A student says that the zeros of y = (x 2)(x + 7) are -2 and 7. Is the student correct? If not, describe and correct the error the student made.
- **15.** Construct Arguments Explain why $x^2 + 25$ is not equal to $(x + 5)^2$.
- **16.** Mathematical Connections Describe how factoring can help you find the *x*-intercepts of the graph of the quadratic function $y = x^2 4x + 3$.

Scan for Multimedia

PRACTICE

Factor each quadratic expression. SEE EXAMPLE 1

17. <i>x</i> ² – 3 <i>x</i> – 10	18. 3 <i>x</i> ² – 5 <i>x</i> – 12
19. <i>x</i> ² + 15 <i>x</i> + 56	20. $2x^2 + 7x - 15$
21. $3x^2 - 18x - 48$	22. $4x^2 - 11x - 3$

23. What are the zeros of the quadratic function y = 3(x - 5)(x + 4)? SEE EXAMPLE 2

Solve each quadratic equation. SEE EXAMPLE 3

24. $x^2 - 5x - 14 = 0$	25. $x^2 = 5x - 6$
26. $3x^2 - 60 = 3x$	27. $5x^2 + 12x = 9$
28. $4x^2 + 3x - 7 = 0$	29. $6x^2 = 5x + 6$

30. A penny is dropped from the top of a new building. Its height in feet can be modeled by the equation $y = 256 - 16x^2$, where x is the time in seconds since the penny was dropped. How long does it take for the penny to reach the ground? SEE EXAMPLE 4

Identify the interval(s) on which each quadratic function is positive. SEE EXAMPLE 5

31. $y = x^2 + 9x + 18$	32. $y = x^2 + 2x - 8$
33. $y = x^2 - 5x - 24$	34. $y = -x^2 + 4x + 12$
35. $y = 2x^2 + 12x + 18$	36. $y = 5x^2 - 3x - 8$

Write an equation for each parabola. SEE EXAMPLE 6

- 37. A parabola with *x*-intercepts at (-1, 0) and(3, 0) which passes through the point (1, -8)
- **38.** A parabola with *x*-intercepts at 0 and 1 and which passes through the point (2, -2)
- **39.** A snorkeler dives for a shell on a reef. After entering the water, the diver descends $\frac{11}{3}$ ft in one second. Write an equation that models the diver's position with respect to time.

PRACTICE & PROBLEM SOLVING

Practice (U) Tutorial Mixed Review Available Online

APPLY

- 40. Make Sense and Persevere Rectangular apartments are 12 ft longer than they are wide. Each apartment has 1,053 ft² of floor space. What are the dimensions of an apartment? Explain.
- 41. Use Structure The height of a drone, in meters, above its launching platform that is 5 m above the ground, is modeled by $y = 0.1x^2 - 1.5x + 5$, where x is the time in seconds. The drone leaves the launch pad, flies down into a canyon, and then it flies back up again.

- a. What is the factored form of the equation for the height of the drone?
- b. After how many seconds will the drone be at ground level?
- c. After how many seconds will the drone come back to the height of its platform?
- 42. Higher Order Thinking LaTanya is designing a rectangular garden with a uniform walkway around its border. LaTanya has 140 m² of material to build the walkway.
 - a. Write an equation for the dimensions of the garden and the surrounding walkway.
 - b. How wide is the walkway? Explain.

ASSESSMENT PRACTICE

43. Which of the following are solutions to the equation $-11x = 2x^2 + 15$? Select all that apply.

(A) −5	$\mathbb{D}\frac{5}{2}$
® −3	Ē 3
$^{\odot}-\frac{5}{2}$	Ē 5

- **44. SAT/ACT** What is the sum of the zeros of the function $y = x^2 - 9x - 10$?
 - **▲** −10 **■** −9 © 0 D 9 **E** 10
- **45. Performance Task** A pumpkin is launched from the ground into the air and lands 4.5 s later.

Part A Write a quadratic function that models the height, in feet, of the pumpkin x seconds after it is launched. Explain how you found the function.

Part B A second pumpkin is launched from the ground. After 1 second, it is 64 feet high. The pumpkin lands after 5 seconds. What is the maximum height of the pumpkin? Explain.

