Name _

PearsonRealize.com

2-3 Reteach to Build Understanding

Factored Form of a Quadratic Function

1. Factor the quadratic equation $y = x^2 - 5x + 6$.

Step 1: Find the coefficients of each term a = 1, b = -5, c =____ *a*, *b*, and *c*.

Step 2: Look for factors with product $ac = ___$ and b = -5 *ac* and sum *b*.

Step 3: Use the Distributive Property to expand the product and find two numbers.

Factors of 6	1, 6	-1, -6	2, 3	-2, -3
Sum of factors				

The numbers -2 and -3 have product 6 and sum -5. Then rewrite -5x as _____ and _____.

Step 4: Rewrite the equation as $y = x^2$ ______ + 6 = ____(x - 2) - 3(_____) = (x - 2)(_____)

The factored form of the equation is y = (x - 2)(____).

2. Joshua is *j* years old. The product of his younger brother's and older sister's ages is $j^2 - 4j - 21$. How old are Joshua and his sister?

The zeros of the expression $j^2 - 4j - 21$ are the solutions of the equation $0 = j^2 - 4j - 21$.

$$j^2 - 4j - 21 = 0$$
Set the expression equal to 0. $(j + __)(j + __) = 0$ Write the equation in factored form. $j + __$ or $j + __$ Use Zero Product Property. $j = __$ or $j = __$ Solve.

Joshua's age cannot be negative, so j =____; Joshua's sister is ____ year(s) old; Joshua's brother is ____ year(s) old; Joshua is ____ year(s) old.

3. A student says that the zeros of the quadratic equation $y = x^2 - 10x + 21$ are -3 and -7. Is the student correct? If not, describe and correct the error the student made.