2-3 Reteach to Build Understanding

Factored Form of a Quadratic Function

1. Factor the quadratic equation $y=x^{2}-5 x+6$.

Step 1: Find the coefficients of each term a, b, and c.
Step 2: Look for factors with product ac and sum b.

$$
a=1, b=-5, c=
$$

\qquad

Step 3: Use the Distributive Property to expand the product and find two numbers.

Factors of 6	1,6	$-1,-6$	2,3	$-2,-3$
Sum of factors				

The numbers -2 and -3 have product 6 and sum -5 . Then rewrite $-5 x$ as \qquad and \qquad .

Step 4: Rewrite the equation as $y=x^{2}$ \qquad $+6$

$$
\begin{aligned}
& =\quad(x-2)-3(\square) \\
& =(x-2)(\square)
\end{aligned}
$$

The factored form of the equation is $y=(x-2)$ (\qquad).
2. Joshua is j years old. The product of his younger brother's and older sister's ages is $j^{2}-4 j-21$. How old are Joshua and his sister?
The zeros of the expression $j^{2}-4 j-21$ are the solutions of the equation $0=j^{2}-4 j-21$.
$j^{2}-4 j-21=0$
$(j+\longrightarrow \quad)(j+\quad)=0$
$j+\quad$ or $j+$ \qquad
$j=$ \qquad or $j=$ \qquad
Joshua's age cannot be negative, so $j=$ \qquad ; Joshua's sister is \qquad year(s) old; Joshua's brother is \qquad year(s) old; Joshua is \qquad year(s) old.
3. A student says that the zeros of the quadratic equation $y=x^{2}-10 x+21$ are -3 and -7 . Is the student correct? If not, describe and correct the error the student made.

