PRACTICE & PROBLEM SOLVING

Scan for Multimedia

UNDERSTAND

- **11. Use Appropriate Tools** How could you use a graphing calculator to determine whether you have correctly solved a quadratic equation by completing the square?
- **12. Error Analysis** Describe and correct the error a student made in solving a quadratic equation by completing the square.

- **13. Higher Order Thinking** What number do you need to add to $x^2 + \frac{7}{2}x$ in order to create a perfect square trinomial? Explain.
- **14.** Reason Does the geometric model hold for finding the number that completes the square of the expression $x^2 12x$? Explain.
- **15.** Error Analysis When given the equation $-23 = x^2 + 8x$, a student says that you can add 64 to each side of the equation to complete the square. Is the student correct? If not, describe and correct the error.
- **16.** Construct Arguments Explain why you should not try to complete the square when solving $0 = x^2 4$.
- **17. Use Structure** Jacob completed the square to rewrite the equation $f(x) = -2x^2 + 12x 13$ as $f(x) = -2(x 3)^2 + 5$. Which form of the equation is more helpful for identifying the key features of the graph? Explain.

PRACTICE

Use square roots to solve the quadratic equations. SEE EXAMPLE 1

18. 9 = $x^2 + 2x + 1$	19. $16 = x^2 - 10x + 25$
20. $50 = 2x^2 + 16x + 32$	21. $5 = 3x^2 - 36x + 108$
22. $7 = x^2 + 4x + 4$	23. $-4 = x^2 + 14x + 49$

Rewrite the equations in the form $(x - p)^2 = q$. SEE EXAMPLE 2

24. $0 = x^2 - 18x + 64$	25. $x^2 + 22x + 120.5 = 0$
26. $x^2 + 3x - \frac{27}{4} = 0$	27. 0 = $4x^2 + 4x - 14$
28. 0 = $x^2 - \frac{3}{2}x - \frac{70}{8}$	29. $x^2 + 0.6x - 19.1 = 0$

Solve the following quadratic equations by completing the square. SEE EXAMPLES 3 AND 4

30. $x^2 + 8x + 60 = 0$	31. $x^2 + 14x = 51$
32 $4x^2 + 16x - 65 = 0$	33. $7x^2 + 56x - 22 = 0$
34. $3x^2 - 6x + 13 = 0$	35. $x^2 - 0.4x - 1.2 = 0$
36. $x^2 + 6x = 59$	37. $8x^2 + 16x = 42$
38. $5x^2 - 25 = 10x$	39. $-2x^2 - 12x + 18 = 0$
40. $-3x^2 - 24x - 19 = 0$	41. $17 - x^2 - 18x = 0$

42. What is the length and width of the skate park?

Write the equation in vertex form. Identify the maximum or minimum value of the graph of the equation. SEE EXAMPLE 5

43. $y = x^2 + 4x - 13$ **44.** $y = x^2 - 14x + 71$ **45.** $y = -2x^2 - 20x - 58$ **46.** $y = -3x^2 + 36x - 93$ **47.** $y = 6x^2 - 42x + 74.5$ **48.** $y = 0.5x^2 + 0.5x + 2.125$

PRACTICE & PROBLEM SOLVING

APPLY

49. Make Sense and Persevere Keenan launches a model helicopter. The height of the helicopter, in feet, is given by the equation $h = -16t^2 + 64t + 190$, where t is the time in seconds. To the nearest hundredth, how many seconds will it take the helicopter to hit the ground? What is the maximum height of the helicopter?

- **50.** Use Structure The decreasing population, *p*, of owls in a national park is being monitored by ecologists and is modeled by the equation p = -0.4 $t^2 + 128t + 1,200$, where *t* is the number of months since the ecologists started observing the owls.
 - **a.** If this model is accurate, when will the population reach its maximum?
 - **b.** What is the maximum population? Round to the nearest whole number.
 - c. Use the equation to determine in how many months the population of owls will disappear.
- **51.** Make Sense and Persevere Between 2000 and 2005, the number of skateboarders *s* in the United States, in millions, can be approximated by the equation $s = 0.33t^2 + 2.27t + 3.96$, where *t* represents the number of years since 2000. If this model is accurate, in what year did 9.8 million people skateboard?

ASSESSMENT PRACTICE

- **52.** The roots of $f(x) = -2x^2 + 8x + 13$ are _____ and _____. The vertex of the parabola is at _____.
- **53. SAT/ACT** Solve $x^2 + 2x 5 = 0$.
 - (A) -5, 1(B) $-1 \pm \sqrt{5}$ (C) $-1 \pm \sqrt{6}$ (D) $1 \pm \sqrt{5}$ (C) -2 = 1
 - € -3, 1
- **54. Performance Task** Yumiko has a rectangularshaped patio. She wants to double the area of the patio by increasing the length and width by the same amount.

Part A Write a function to calculate the number of feet Yumiko would need to add to the length and width. Explain your reasoning.

Part B To the nearest hundredth, what are the new dimensions of the patio?