3-1 Reteach to Build Understanding

Graphing Polynomial Functions

1a. Complete the tables to identify type of polynomial.

Type of Polynomial		Degree of Polynomial (Greatest Exponent)			
		1–Linear	2–	3–Cubic	4–Quartic
Number of	1–Monomial	Linear		Cubic	
Terms		Monomial	Monomial		
	2–Binomial	Linear		Cubic	
		Binomial			
	3–		Quadratic		
		Trinomial	Trinomial		

1b. Identify the degree, number of terms, type, and leading coefficient of each equation.

	Explanation	$5x^2 - 2x - 9$	$-x^3 + 5$
Degree	Greatest exponent.		
Number of Terms	The number of items being added together.		
Туре	See "Type of Polynomial Table".		
Leading Coefficient	The number being multiplied times <i>x</i> to the greatest exponent.		

- 2. Cameron graphed $f(x) = x^3 6$. He concluded that it is a quadratic trinomial. What was his error?
- **3.** Complete the table to describe the graph using the leading coefficient and degree of the function.

		Leading Coefficient		
		Positive	Negative	
Largest Exponential Value	Odd Degree	As $x \to +\infty$, $y \to \infty$	As $x \to +\infty$, $y \to -\infty$	
		As $x \to -\infty$, $y \to \infty$	As $x \to -\infty$, $y \to \infty$	
	Even Degree	As $x \to +\infty$, $y \to$	As $x \to +\infty$, $y \to$	
		As $x \to -\infty$, $y \to -\infty$	As $x \to -\infty$, $y \to -\infty$	