UNDERSTAND

18. Use Structure Expand $(3 x+4 y)^{3}$ using Pascal's Triangle and the Binomial Theorem.
19. Error Analysis Emma factored $625 g^{16}-25 h^{4}$. Describe and correct the error Emma made in factoring the polynomial.

$$
\begin{aligned}
& 625 g^{16}-25 h^{4} \\
& =\left(25 g^{4}\right)^{2}-\left(5 h^{2}\right)^{2} \\
& =\left(25 g^{4}+5 h^{2}\right)\left(25 g^{4}-5 h^{2}\right)
\end{aligned}
$$

20. Higher Order Thinking Use Pascal's Triangle and the Binomial Theorem to expand $(x+i)^{4}$. Justify your work.
21. Use Structure Expand the expression $(2 x-1)^{4}$. What is the sum of the coefficients?
22. Error Analysis A student says that the expansion of the expression $(-4 y+z)^{7}$ has seven terms. Describe and correct the error the student may have made.
23. Reason The sum of the coefficients in the expansion of the expression $(a+b)^{n}$ is 64 . Use Pascal's Triangle to find the value of n.
24. Use Structure Factor $x^{3}-125 y^{6}$ in the form $(x-A)\left(x^{2}+B x+C\right)$. What are the values of A, B, and C ?

Generalize How many terms will there be in the expansion of the expression $(x+3)^{n}$? Explain how you know.

Make Sense and Persevere How could you use polynomial identities to factor the expression $x^{6}-y^{6}$?

PRACTICE

27. Prove the polynomial identity.
$x^{4}-y^{4}=(x-y)(x+y)\left(x^{2}+y^{2}\right)$
SEE EXAMPLE 1
Use polynomial identities to multiply the expressions. SEE EXAMPLE 2
28. $(x+9)(x-9)$
29. $(x+6)^{2}$
30. $(3 x-7)^{2}$
31. $(2 x-5)(2 x+5)$
32. $\left(4 x^{2}+6 y^{2}\right)\left(4 x^{2}-6 y^{2}\right)$
33. $\left(x^{2}+y^{6}\right)^{2}$
34. $\left(8-x^{2}\right)\left(8+x^{2}\right)$
35. $\left(6-y^{3}\right)^{2}$
36. $18 \cdot 22$
37. $103 \cdot 97$
38. $(7+9)^{2}$
39. $(10+5)^{2}$

Use polynomial identities to factor the polynomials or simplify the expressions. SEE EXAMPLE 3
40. $x^{8}-9$
41. $x^{9}-8$
42. $8 x^{3}+y^{9}$
43. $x^{6}-27 y^{3}$
44. $4 x^{2}-y^{6}$
45. $216+27 y^{12}$
46. $64 x^{3}-125 y^{6}$
47. $\frac{1}{16} x^{6}-25 y^{4}$
48. $9^{3}+6^{3}$
49. $10^{3}+5^{3}$
50. $10^{3}-3^{3}$
51. $8^{3}-2^{3}$

Use the Binomial Theorem to expand the expressions. SEE EXAMPLES 4 and 5
52. $(x+3)^{3}$
53. $(2 a-b)^{5}$
54. $\left(b-\frac{1}{2}\right)^{4}$
55. $\left(x^{2}+1\right)^{4}$
56. $\left(2 x+\frac{1}{3}\right)^{3}$
57. $\left(x^{3}+y^{2}\right)^{6}$
58. $(d-3)^{4}$
59. $(2 m+2 n)^{6}$
60. $(n+5)^{5}$
61. $(3 x-0.2)^{3}$
62. $(4 g+2 h)^{4}$
63. $\left(m^{2}+\frac{1}{2} n\right)^{3}$

APPLY

64. Use Structure A medium-sized shipping box with side length s units has a volume of s^{3} cubic units.

a. A large shipping box has side lengths that are 3 units longer than the medium shipping box. Write a binomial expression for the volume of the large shipping box.
b. Expand the polynomial in part a to simplify the volume of the large shipping box.
c. A small shipping box has side lengths that are 2 units shorter than the medium shipping box. Write a binomial expression for the volume of the small shipping box.
d. Expand the polynomial in part c to simplify the volume of the small shipping box.
65. Reason The dimensions of a rectangle are shown. Write the area of the rectangle as a difference of cubes.

66. A Pythagorean triple is a set of three positive integers a, b, and c that satisfy $a^{2}+b^{2}=c^{2}$. The identity $\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}=\left(x^{2}+y^{2}\right)^{2}$ can be used to generate Pythagorean triples. Use the identity to generate a Pythagorean triple when $x=5$ and $y=4$.

ASSESSMENT PRACTICE

67. Are the expressions below perfect square trinomials? Select Yes or No.

	Yes	No
$x^{2}+16 x+64$		
$4 x^{2}-44 x+121$		
$9 x^{2}-15 x+25$		

68. SAT/ACT How many terms are in the expansion of $(2 x+7 y)^{9}$?
(A) 2
(B) 7
© 8
(D) 9
(E) 10
69. Performance Task If an event has a probability of success p and a probability of failure q, then each term in the expansion of $(p+q)^{n}$ represents a probability. For example, if a basketball player makes 60% of his free throw attempts, $p=0.6$ and $q=0.4$. To find the probability the basketball player will make exactly h out of k free throws, find $C_{k-h} p^{h} q^{k-h}$, where C_{k-h} is a coefficient of row k of Pascal's Triangle, p is the probability of success, and q is the probability of failure.

Part A What is the probability the basketball player will make exactly 6 out of 10 free throws? Round to the nearest percent.

Part B Another basketball player makes 80% of her free throw attempts. Write an expression to find the probability of this basketball player making exactly 7 out of 10 free throws. Describe what each variable in the expression represents.
Part C Find the probability that the basketball player from Part B will make exactly 7 out of 10 free throws. Round to the nearest percent.

