PRACTICE & PROBLEM SOLVING

Additional Exercises Available Online

UNDERSTAND

- **18. Use Structure** Expand $(3x + 4y)^3$ using Pascal's Triangle and the Binomial Theorem.
- **19.** Error Analysis Emma factored $625g^{16} 25h^4$. Describe and correct the error Emma made in factoring the polynomial.

$$625g^{16} - 25h^4$$

= (25g^4)² - (5h²)²
= (25g⁴ + 5h²)(25g⁴ - 5h²)

- **20. Higher Order Thinking** Use Pascal's Triangle and the Binomial Theorem to expand $(x + i)^4$. Justify your work.
- **21. Use Structure** Expand the expression $(2x 1)^4$. What is the sum of the coefficients?
- **22.** Error Analysis A student says that the expansion of the expression $(-4y + z)^7$ has seven terms. Describe and correct the error the student may have made.
- **23.** Reason The sum of the coefficients in the expansion of the expression $(a + b)^n$ is 64. Use Pascal's Triangle to find the value of n.
- **24.** Use Structure Factor $x^3 125y^6$ in the form $(x A)(x^2 + Bx + C)$. What are the values of A, B, and C?

Generalize How many terms will there be in the expansion of the expression $(x + 3)^n$? Explain how you know.

Make Sense and Persevere How could you use polynomial identities to factor the expression $x^6 - y^6$?

PRACTICE

27. Prove the polynomial identity. $x^4 - y^4 = (x - y)(x + y)(x^2 + y^2)$ SEE EXAMPLE 1

Use polynomial identities to multiply the expressions. SEE EXAMPLE 2

28. $(x + 9)(x - 9)$	29. (<i>x</i> + 6) ²	
30. (3 <i>x</i> – 7) ²	31. (2 <i>x</i> – 5)(2 <i>x</i> + 5)	
32. $(4x^2 + 6y^2)(4x^2 - 6y^2)$	33. $(x^2 + y^6)^2$	
34. $(8 - x^2)(8 + x^2)$	35. $(6 - y^3)^2$	
36. 18 • 22	37 . 103 • 97	
38. (7 + 9) ²	39. (10 + 5) ²	

Use polynomial identities to factor the polynomials or simplify the expressions. SEE EXAMPLE 3

40. <i>x</i> ⁸ – 9	41. <i>x</i> ⁹ – 8
42. $8x^3 + y^9$	43. $x^6 - 27y^3$
44. $4x^2 - y^6$	45. 216 + 27 <i>y</i> ¹²
46. 64 <i>x</i> ³ – 125 <i>y</i> ⁶	47. $\frac{1}{16}x^6 - 25y^4$
48. 9 ³ + 6 ³	49. 10 ³ + 5 ³
50. 10 ³ – 3 ³	51. 8 ³ – 2 ³

Use the Binomial Theorem to expand the expressions. SEE EXAMPLES 4 and 5

52. (<i>x</i> + 3) ³	53. (2a – b) ⁵
54. $\left(b - \frac{1}{2}\right)^4$	55. $(x^2 + 1)^4$
56. $\left(2x+\frac{1}{3}\right)^3$	57 . $(x^3 + y^2)^6$
58. $(d - 3)^4$	59. (2 <i>m</i> + 2 <i>n</i>) ⁶
60. (<i>n</i> + 5) ⁵	61. (3 <i>x</i> – 0.2) ³
62. $(4g + 2h)^4$	63. $\left(m^2 + \frac{1}{2}n\right)^2$

PRACTICE & PROBLEM SOLVING

APPLY

64. Use Structure A medium-sized shipping box with side length *s* units has a volume of s^3 cubic units.

- a. A large shipping box has side lengths that are 3 units longer than the medium shipping box. Write a binomial expression for the volume of the large shipping box.
- **b.** Expand the polynomial in part a to simplify the volume of the large shipping box.
- c. A small shipping box has side lengths that are 2 units shorter than the medium shipping box. Write a binomial expression for the volume of the small shipping box.
- **d.** Expand the polynomial in part c to simplify the volume of the small shipping box.
- **65. Reason** The dimensions of a rectangle are shown. Write the area of the rectangle as a difference of cubes.

66. A Pythagorean triple is a set of three positive integers a, b, and c that satisfy $a^2 + b^2 = c^2$. The identity $(x^2 - y^2)^2 + (2xy)^2 = (x^2 + y^2)^2$ can be used to generate Pythagorean triples. Use the identity to generate a Pythagorean triple when x = 5 and y = 4.

ASSESSMENT PRACTICE

67. Are the expressions below perfect square trinomials? Select *Yes* or *No*.

	Yes	No
$x^2 + 16x + 64$		
$4x^2 - 44x + 121$		
$9x^2 - 15x + 25$		

68. SAT/ACT How many terms are in the expansion of $(2x + 7y)^9$?

A 2 B 7 C 8 D 9 E 10

69. Performance Task If an event has a probability of success p and a probability of failure q, then each term in the expansion of $(p + q)^n$ represents a probability. For example, if a basketball player makes 60% of his free throw attempts, p = 0.6 and q = 0.4. To find the probability the basketball player will make exactly h out of k free throws, find $C_{k-h}p^hq^{k-h}$, where C_{k-h} is a coefficient of row k of Pascal's Triangle, p is the probability of success, and q is the probability of failure.

Part A What is the probability the basketball player will make exactly 6 out of 10 free throws? Round to the nearest percent.

Part B Another basketball player makes 80% of her free throw attempts. Write an expression to find the probability of this basketball player making exactly 7 out of 10 free throws. Describe what each variable in the expression represents.

Part C Find the probability that the basketball player from Part B will make exactly 7 out of 10 free throws. Round to the nearest percent.