3-3 Reteach to Build Understanding

Polynomial Identities

Special polynomial identities can be used to multiply polynomials.
$(a x+b)(a x+b)$ or $(a x-b)(a x-b)$ can be multiplied using the formula $a x^{2} \pm 2 a b x+b^{2}$ where the sign of the second term is determined by whether you are adding or subtracting the polynomial.

Example:

$(3 x \pm 2)(3 x \pm 2)=a^{2} \pm 2 a b+b^{2}$
Where $a=3 x \quad 2 a b=2(3 x)(2) \quad b=2 \quad a^{2}=9 x^{2} \quad 2 a b=12 x \quad b^{2}=4$
if $(3 x+2)(3 x+2)=9 x^{2}+12 x+4 \quad$ if $(3 x-2)(3 x-2)=9 x^{2}-12 x+4$

1. Solve the following problems:
a. $(2 x+2)(2 x+2)=a^{2}+2 a b+b^{2}$
i. Identify the values: $a=\quad b=$
ii. Substitute into: $a^{2}=(2 x)^{2} \quad 2 a b=2(2 x)(2) \quad b^{2}=(2)^{2}$
iii. Solve: $(2 x+2)(2 x+2)=x^{2}+x+4$
b. $(x-3)(x-3)=a^{2}+2 a b+b^{2}$
i. Identify the values: $a=\quad b=$
ii. Substitute into: $a^{2}=()^{2} \quad 2 a b=\quad b^{2}=()^{2}$
iii. Solve: $(x-3)(x-3)=x^{2}-x+$
2. Martin solved this problem for his math class. Find and fix his mistake.
$(3 x-4)(3 x-4)=9 x^{2}+24 x+16$
3. Solve.
a. $(2 x+y)=$
i. $a=2 x \quad=2(1 x)(1 y) \quad b=1 y$
ii. $a^{2}=(\quad)^{2} \quad 2 a b=$

$$
b^{2}=()^{2}
$$

iii. $(2 x+y)=$
b. $(5 x-2)(5 x-2)=$
i. $a=$ $2 a b=$

$$
b=-2
$$

ii. $a^{2}=(\quad)^{2} \quad 2 a b=$

$$
b^{2}=(\quad)^{2}
$$

iii. $(5 x-2)(5 x-2)=$
4

