3-3 Reteach to Build Understanding

Polynomial Identities

Special polynomial identities can be used to multiply polynomials.

(ax + b)(ax + b) or (ax - b)(ax - b) can be multiplied using the formula $ax^2 \pm 2abx + b^2$ where the sign of the second term is determined by whether you are adding or subtracting the polynomial.

Example:

 $(3x \pm 2)(3x \pm 2) = a^{2} \pm 2ab + b^{2}$ Where a = 3x 2ab = 2(3x)(2) b = 2 $a^{2} = 9x^{2}$ 2ab = 12x $b^{2} = 4$ if $(3x + 2)(3x + 2) = 9x^{2} + 12x + 4$ if $(3x - 2)(3x - 2) = 9x^{2} - 12x + 4$ 1. Solve the following problems: a. $(2x + 2)(2x + 2) = a^{2} + 2ab + b^{2}$ i. Identify the values: a = b =ii. Substitute into: $a^{2} = (2x)^{2}$ 2ab = 2(2x)(2) $b^{2} = (2)^{2}$ iii. Solve: $(2x + 2)(2x + 2) = x^{2} + x + 4$ b. $(x - 3)(x - 3) = a^{2} + 2ab + b^{2}$ i. Identify the values: a = b =ii. Substitute into: $a^{2} = ()^{2}$ $2ab = b^{2} = ()^{2}$ iii. Solve: $(x - 3)(x - 3) = x^{2} - x +$ 2. Martin solved this problem for his math class. Find and fix his mistake. $(3x - 4)(3x - 4) = 9x^{2} + 24x + 16$

a. (2x + y) =i. a = 2x = 2(1x)(1y) b = 1yii. $a^2 = (\)^2$ 2ab = $b^2 = (\)^2$ iii. (2x + y) =b. (5x - 2)(5x - 2) =i. a = 2ab = b = -2ii. $a^2 = (\)^2$ 2ab = $b^2 = (\)^2$ iii. (5x - 2)(5x - 2) = 4

enVision™ Algebra 2 • Teaching Resources