3-5 Additional Practice

Zeros of Polynomial Functions

Sketch the graph of the function by finding the zeros. List the zeros.

1. $f(x)=2 x^{3}-12 x^{2}-6 x$
2. $f(x)=x^{3}-2 x^{2}-4 x-6$

		μy				
			O			x
-4			4	8		
-	-40					
-						
-80						
-						

Find the zeros of each function, and describe the behavior of the graph of the function at each zero.
3. $x^{3}-8 x^{2}+18 x$
4. $x^{3}+x^{2}-3 x+1$

What are all the real and complex zeros of each polynomial function.
5. $f(x)=x^{3}-6 x^{2}-7 x-3$
6. $f(x)=x^{3}-x^{2}-2 x+8$
7. A company sells toys. Their profit P, in thousands of dollars, is a function of the number of toys sold, x, measured in hundreds. Profit is modeled as: $P(x)=-4 x^{3}+32 x^{2}-64$. What do the key features of the graph reveal about the profits? What is the maximum profit the company can make?

What values of x solve the inequalities below?
8. $x^{3}-27 x<0$
9. $x^{3}+9 x^{2}-10 x>0$
10. How could you use your graphing calculator to determine that $f(x)=(x-1)$ $(x-6)(x+3)$ is not the correct factorization of: $f(x)=x^{3}+7 x^{2}+4 x-12$. Explain.

