Name _

3-5 Reteach to Build Understanding

Zeros of Polynomial Functions

- **1.** For the polynomial $x^3 36x < 0$, find:
 - **a.** Degree of the polynomial:
 - **b.** End behavior: $x \to \infty$, $y \to \infty$ and $x \to$, $y \to \infty$
 - c. Factor:

$$f(x) = x^3 - 36x$$

0 = x(x² - 36)

- d. The zeros are at:
- **e.** Test values of *x* between the zeros to determine whether the function is positive or negative.

enVision Algebra 2

PearsonRealize.com

$$f(x) = x^3 - 36x$$
 $x = 7$

- 2. Tavon solved the following $f(x) = x^3 3x^2 54x$. Find his errors and correct them. Then, create a positive/negative chart like those seen above.
 - **a.** The degree of the polynomial is 2.
 - **b.** End behavior: $x \to \infty$, $y \to \infty$ and $x \to -\infty$, $y \to -\infty$
 - c. Zeros are at 0, 9 and -6.
- **3.** Solve the inequality $x^4 25x^2 < 0$.
 - a. Degree of the polynomial:
 - **b.** End behavior: $x \rightarrow (y \rightarrow \infty \text{ and } x \rightarrow -\infty, y \rightarrow \infty)$
 - c. Find the zeros using factoring or synthetic division:

$$f(x) = x^4 - 25x^2 = (x^2 - 25)$$

The zeros are at: