PRACTICE & PROBLEM SOLVING

Scan for Multimedia

UNDERSTAND

- **13.** Construct Arguments Consider the polynomial $P(x) = 5x^3 + ms^2 + nx + 6$, where *m* and *n* are rational coefficients. Is 3 *sometimes, always,* or *never* a root? Explain.
- **14.** Use Structure Write a fourth-degree polynomial function *Q* with roots –1, 0, and 2*i*.
- **15. Error Analysis** A student says that a fifthdegree polynomial equation with rational coefficients has roots -5, -3, 1, 2, and $\sqrt{3}$. Describe possible errors the student may have made.
- **16. Reason** Write a third-degree polynomial with rational coefficients that has the following possible roots. Explain your reasoning.

 $\pm \frac{1}{1}, \pm \frac{1}{2}, \pm \frac{2}{1}, \pm \frac{2}{2}, \pm \frac{5}{1}, \pm \frac{5}{2}, \pm \frac{10}{1}, \pm \frac{10}{2}$

17. Error Analysis Describe and correct the error a student made in finding the roots of the polynomial equation $2x^3 - x^2 - 10x + 5 = 0$.

List all possible rational roots. $\pm 1, \pm \frac{1}{2}, \pm 5, \pm \frac{5}{2}$ Testing reveals that $\frac{1}{2}$ is a root. Dividing the polynomial by the binomial $x - \frac{1}{2}$ results in the factored form $f(x) = (x - \frac{1}{2})(2x^2 - 10)$

The equation $2x^2 - 10 = 0$ has two irrational roots, $\sqrt{10}$ and $-\sqrt{10}$.

The complete set of roots is $\{\frac{1}{2}, \sqrt{10}, -\sqrt{10}\}.$

- **18. Higher Order Thinking** What is the least number of terms a fifth-degree polynomial with root 3*i* can have? Give an example of such a polynomial equation. Explain.
- **19. Use Structure** Show that the Fundamental Theorem of Algebra is true for all quadratic equations with real coefficients. (*Hint*: Use the Quadratic Formula and examine the possibilities for the value of the discriminant.)

PRACTICE

List all the possible rational solutions for each equation. SEE EXAMPLE 1

20.
$$0 = x^3 - 3x^2 + 4x - 12$$

21. $0 = 2x^4 + 13x^3 - 47x^2 - 13x + 45$
22. $0 = 4x^3 + 64x^2 - x - 16$
23. $0 = 8x^3 + 11x^2 - 13x - 6$
24. A closet in the shape of a rectangular prism has the measurements shown. What is the height

of the closet, in feet, if its volume is 220 ft³?

What are all real and complex roots of the following functions? SEE EXAMPLE 3

25.
$$0 = x^3 - 3x - 52$$

26. $0 = x^3 + 9x^2 - 7x - 63$

27. 0 =
$$x^4$$
 + 34 x^2 -72

28. 0 = $x^6 + 4x^4 - 41x^2 + 36$

29. Suppose a cubic polynomial *f* has one rational zero *c* and two irrational zeros which are a conjugate pair $a + \sqrt{b}$ and $a - \sqrt{b}$, where *a* and *b* are rational numbers. Does *f* have rational coefficients? SEE EXAMPLE 4

Find a polynomial function P(x) such that P has the degree and P(x) = 0 has the root(s) listed. SEE EXAMPLE 5

- **30.** degree of *P* = 2; zero: 1 + 6*i*
- **31.** degree of P = 4; zeros: $3 - \sqrt{11}$ and -9i
- **32.** degree of *P* = 3; zeros: -5 and 4 8*i*

PRACTICE & PROBLEM SOLVING

APPLY

33. Make Sense and Persevere A fireproof safe has the measurements shown.

- a. Write an equation to represent the situation when the volume of the fireproof safe is 270 in.³. Rewrite the equation in the form P(x)=0.
- b. List all of the possible factors of the polynomial expression.
- c. What are the real roots of the equation? Explain how you know these are the only real roots.
- d. What are the length, width, and height of the fireproof safe?
- 34. Make Sense and Persevere What are the dimensions of the fish tank, in feet, if its volume is 176 ft³?

35. Reason The cost of producing x video game consoles is modeled by the function $C(x) = x^4 - 5x^3 - 12x^2 - 22x - 40$. If a company spent \$1,706 to produce video game consoles, how many consoles were made?

ASSESSMENT PRACTICE

36. A fifth-degree polynomial equation with rational coefficients has the roots 3, 8i, and $7 - \sqrt{5}$. Which are also roots of the polynomial equation? Select all that apply.

(A) −3 [®] −8*i* © 1 – 8*i* $\bigcirc -7 - \sqrt{5}$ E 7 + $\sqrt{5}$

37. SAT/ACT Which is a third-degree polynomial equation with rational coefficients that has roots -2 and 6i?

(A) $x^3 + 2x^2 + 36x + 72$ ^(B) $x^3 - 2x^2 + 36x - 72$ $\bigcirc x^3 + 2x^2 - 36x - 72$ $x^2 + (6i - 2)x - 12$ $(E) x^2 - (6i - 2)x - 12$

38. Performance Task The table shows the number of possible real and imaginary roots for an *n*th degree polynomial equation with rational coefficients.

Degree	Real Roots	Imaginary Roots
3	3	0
3	1	2
5	5	0
5	3	2
5	1	4

Part A List all of the possible combinations of real and imaginary roots for a seventh-degree polynomial equation.

Part B What do you notice about the number of real roots of a polynomial equation with an odd degree?

