3-6 Reteach to Build Understanding

Theorems About Roots of Polynomial Equations

Use the graph of $P(x) = x^3 - 2x^2 - 11x + 12$ to answer the following questions.

- **1a.** Circle the points where the graph intersects the *x*-axis.
- **1b.** What are the points that intersect the *x*-axis ?

Next, use the Rational Root Theorem to check those answers.

The Rational Root = $\frac{p}{q}$

Part of the Equation	Definition	Number to Be Factored	Factors
р	$a_0 =$ the value of $P(0) =$ the constant	12	±
q	$a_n =$ the leading coefficient	1	±

1c. List all of the possible roots as $\frac{p}{q} \cdot \pm$

1d. Next input all of the roots into the equation. Which factors make P(x) = 0?

- 2. Isabel believes that $f(x) = x^3 9x^2 + 27x 27$ has 3 complex roots. Nicky told her that it has 4 complex roots. Who is correct? What error was made by the other friend?
- **3.** What is the equation of a quadratic function *P* with rational coefficients that has a zero of 3 + 2i?

$$P(x) = [x - (3 + 2i)][(x - (3 - 2i)]$$

= [(x - 3) - _i][(x - _) + 2i)]
= (x - _)² - (_i)²
= x² - _x + _ - (-_)
= x² - __ + __

