3-6 Reteach to Build Understanding

Theorems About Roots of Polynomial Equations

Use the graph of $P(x)=x^{3}-2 x^{2}-11 x+12$ to answer the following questions.

1a. Circle the points where the graph intersects the x-axis.

1b. What are the points that intersect the x-axis ?

Next, use the Rational Root Theorem to check those answers.

The Rational Root $=\frac{p}{q}$

Part of the Equation	Definition	Number to Be Factored	Factors
p	$a_{0}=$ the value of $P(0)=$ the constant	12	\pm
q	$a_{n}=$ the leading coefficient	1	\pm

1c. List all of the possible roots as $\frac{p}{q} \cdot \pm$
1d. Next input all of the roots into the equation. Which factors make $P(x)=0$?
2. Isabel believes that $f(x)=x^{3}-9 x^{2}+27 x-27$ has 3 complex roots. Nicky told her that it has 4 complex roots. Who is correct?
What error was made by the other friend?
3. What is the equation of a quadratic function P with rational coefficients that has a zero of $3+2 i$?

$$
\begin{aligned}
P(x) & =[x-(3+2 i)][(x-(3-2 i)] \\
& \left.=\left[(x-3)-_i\right][(x-)+2 i)\right] \\
& =(x-)^{2}-(i)^{2} \\
& =x^{2}-x+\ldots-(-) \\
& =x^{2}-\ldots+
\end{aligned}
$$

