3-7 Reteach to Build Understanding

Transformations of Polynomial Functions

1. A function $f(x)$ is called even, if replacing x by $-x$ does not change the function. If changing x to $-x$ results in changing $f(x)$ to $-f(x)$, then the function is called odd. Identify the functions as even, odd, or neither.

Type of Function: Unknown	Type of Function
a. $f(x)=-x^{3}-21 x$	
b. $g(x)=2 x^{3}+5 x-8$	
c. $g(x)=21 x^{4}-6 x^{2}-8$	

2. Tavon described the transformations of these functions. Put an X next to an incorrect answer, and correct the error.

Parent Function	Transformed Function	Description

3. $f(x)=x^{2}$ is the parent function of $g(x)=x^{2}+4 x-3$. Determine how the graph of $f(x)$ transformed to the graph of $g(x)$.

Step1. $g(x)=x^{2}+4 x-3$
Step 2. $g(x)=x^{2}+4 x-3+4-4$

Given transformed function.
Add and subtract 4; so you can factor the first two terms.

Step 3. $g(x)=\left(x^{2}+4 x+4\right)-3-4 \quad$ Group three terms inside parentheses.
Step 4. $g(x)=\left(x^{2}+2\right)^{2}-3-4$ \qquad
\qquad
\qquad .

Step 5. $g(x)=\left(x^{2}+2\right)^{2}-7$
Conclusion: The graph of $f(x)$ moved \qquad to the left.

Then it moved \qquad .

