\qquad
\qquad
\qquad

Alg 2 Topic 3 Practice

\qquad 1. Classify $-2 x^{4}-x^{3}+8 x^{2}+12$ by degree.
a. quartic
c. quadratic
b. quintic
d. cubic
\qquad 2. Classify $8 x^{4}+7 x^{3}+5 x^{2}+8$ by number of terms.
a. trinomial
c. polynomial of 5 terms
b. binomial
d. polynomial of 4 terms
\qquad 3. Graph $y=3(x+2)^{3}-3$ and describe the end behavior.
a.

The end behavior is up and down.
b.

The end behavior is down and up.
c.

The end behavior is down and up.

The end behavior is up and down.

Write the polynomial in standard form. Then name the polynomial based on its degree and number of terms.
4. $4 g-5 g^{3}+9 g^{2}-6$
a. $5 g^{3}-9 g^{2}+4 g-6$; cubic trinomial
b. $9 g^{3}-5 g^{2}+4 g-6$; quadratic binomial
c. $-5 g^{3}+9 g^{2}+4 g-6$; cubic polynomial
d. $-6+4 g+9 g^{2}-5 g^{3}$; cubic binomial

What is the relative maximum and minimum of the function?
5. $f(x)=x^{3}+3 x^{2}-24 x$
a. The relative maximum is at $(4,28)$ and the relative minimum is at $(-2,-80)$.
b. The relative maximum is at $(-4,80)$ and the relative minimum is at $(2,-28)$.
c. The relative maximum is at $(4,80)$ and the relative minimum is at $(-2,-28)$.
d. The relative maximum is at $(-4,28)$ and the relative minimum is at $(2,-80)$.

Consider the leading term of each polynomial function. What is the end behavior of the graph?
6. $5 x^{8}-2 x^{7}-8 x^{6}+1$
a. The leading term is $5 x^{8}$. Since n is even and a is positive, the end behavior is down and up.
b. The leading term is $5 x^{8}$. Since n is even and a is positive, the end behavior is up and down.
c. The leading term is $5 x^{8}$. Since n is even and a is positive, the end behavior is up and up.
d. The leading term is $5 x^{8}$. Since n is even and a is positive, the end behavior is down and down.

Simplify the sum.

7. $\left(2 u^{3}+6 u^{2}+3\right)+\left(2 u^{3}-7 u+6\right)$
a. $9-7 u+6 u^{2}+4 u^{3}$
b. $0 u^{3}+6 u^{2}-7 u+9$
c. $0 u^{3}-7 u^{2}+6 u-9$
d. $4 u^{3}+6 u^{2}-7 u+9$

Simplify the difference.
\qquad 8. $\left(4 w^{2}-7 w-6\right)-\left(8 w^{2}+2 w-3\right)$
a. $-4 w^{2}-9 w-3$
b. $12 w^{2}+9 w+3$
c. $-4 w^{2}-5 w-9$
d. $12 w^{2}-5 w-9$

Simplify the product.
9. $8 p\left(-3 p^{2}+6 p-2\right)$
a. $-5 p^{3}+14 p^{2}-6 p$
b. $48 p^{2}-16 p-24 p^{3}$
c. $\quad 14 p^{2}-6 p-5 p^{3}$
d. $-24 p^{3}+48 p^{2}-16 p$

Multiply the polynomials.
10. $(3 x-7)(3 x-5)$
a. $9 x^{2}+6 x+35$
b. $9 x^{2}+36 x+35$
c. $9 x^{2}-36 x-35$
d. $9 x^{2}-36 x+35$

Factor the polynomial.
11. $25 w^{6}+35 w^{3}$
a. $5 w^{2}\left(5 w^{4}+7 w\right)$
b. $5 w^{3}\left(5 w^{3}+7\right)$
c. $\quad w^{3}\left(25 w^{3}+35\right)$
d. $5\left(5 w^{6}+7 w^{3}\right)$

Use polynomial identities to multiply the expressions.
12. $(2 x-6)^{2}$
a. $4 x^{2}-24 x+36$
b. $4 x^{2}-8 x+36$
c. $4 x^{2}+36$
d. $4 x^{2}-12 x+36$

What is a simpler form of the following expressions?
13. $\left(7 m^{2}-5\right)\left(7 m^{2}+5\right)$
a. $49 m^{4}-25$
b. $49 m^{3}-25$
c. $49 m^{2}-25$
d. $49 m^{4}+25$

Use the Binomial Theorem to expand the binomial.
14. $(d-3 b)^{3}$
a. $d^{3}-3 d^{2} b+3 d b^{2}-b^{3}$
b. $d^{3}+3 d^{2} b+3 d b^{2}+b^{3}$
c. $d^{3}+9 d^{2} b+27 d b^{2}+27 b^{3}$
d. $d^{3}-9 d^{2} b+27 d b^{2}-27 b^{3}$

Use Pascal's Triangle to expand the binomial.
15. $(2 v+s)^{5}$
a. $s^{5}+10 s^{4} v+40 s^{3} v^{2}+80 s^{2} v^{3}+80 s v^{4}+32 v^{5}$
b. $s^{5}+20 s^{4} v+80 s^{3} v^{2}+160 s^{2} v^{3}+160 s v^{4}+64 v^{5}$
c. $s^{5}-5 s^{4} v+10 s^{3} v^{2}-10 s^{2} v^{3}+5 s v^{4}-v^{5}$
d. $s^{5}+10 s^{4}+40 s^{3}+80 s^{2}+80 s+32$
16. Divide $4 x^{3}+2 x^{2}+3 x+4$ by $x+4$ using long division.
a. $4 x^{2}-14 x+59$
b. $4 x^{2}+18 x-53, \mathrm{R} 240$
c. $4 x^{2}-14 x+59, \mathrm{R}-232$
d. $4 x^{2}+18 x-53$

Divide using synthetic division.
17. Divide $-4 x^{3}+21 x^{2}-23 x+6$ by $(x-4)$.
a. $-4 x^{2}+5 x-3, \mathrm{R}-6$
b. $4 x^{2}-5 x+3$
c. $-4 x^{2}+37 x-43, \mathrm{R} 18$
d. $4 x^{2}-37 x+43$
18. Use synthetic division to find $P(-2)$ for $P(x)=x^{4}+9 x^{3}-9 x+2$.
a. -2
b. 0
c. -36
d. 68

What are all the real and complex solutions of the polynomial equation?
19. $x^{3}-8=0$
a. $1+i \sqrt{3}$ and $1-i \sqrt{3}$
b. $2,-1+i \sqrt{3}$, and $-1-i \sqrt{3}$
c. $2,1+2 i \sqrt{3}$, and $1-2 i \sqrt{3}$
d. $2,2+2 i \sqrt{3}$, and $2-2 i \sqrt{3}$

What are the zeros of the function? What are their multiplicities?
20. $f(x)=x^{4}-4 x^{3}+3 x^{2}$
a. the numbers -1 and -3 are zeros of multiplicity 2 ; the number 0 is a zero of multiplicity 1
b. the number 0 is a zero of multiplicity 2 ; the numbers 1 and 3 are zeros of multiplicity 1
c. the numbers 0 and 1 are zeros of multiplicity 2 ; the number 3 is a zero of multiplicity 1
d. the number 0 is a zero of multiplicity 2 ; the numbers -1 and -3 are zeros of multiplicity 1

What are the zeros of the function? Graph the function.
21. $y=x(x-2)(x+5)$
a. $2,-5$

c. $0,2,-5$

b. $0,-2,5$

d. $2,-5,-2$

22. What values of x are solutions to the inequality $4 x^{3}-10 x^{2}-6 x>0$? Use a graph to solve.
a. $\quad-\frac{1}{2}<x$ and $x>3$
b. $\quad-\frac{1}{2}<x<0$ and $x>3$
c. $\quad x>\frac{1}{2}$ and $-3<x<0$
d. $x<-\frac{1}{2}$ and $0<x<3$

Find all the zeros of the equation.
23. $-x^{3}+x^{2}-3 x+3=0$
a. $\sqrt{3},-\sqrt{3}, 1$
b. $i \sqrt{3},-1$
c. $i \sqrt{3},-i \sqrt{3},-1$
d. $i \sqrt{3},-i \sqrt{3}, 1$
24. Use the Rational Root Theorem to list all possible rational roots of the polynomial equation $x^{3}-4 x^{2}+7 x-8=0$. Do not find the actual roots.
a. $-8,-1,1,8$
c. $1,2,4,8$
b. $-8,-4,-2,-1,1,2,4,8$
d. no possible roots

Find the roots of the polynomial equation.
25. $-x^{3}+5 x^{2}-11 x+55=0$
a. $\quad i \sqrt{11},-i \sqrt{11},-5$
b. $\sqrt{11},-\sqrt{11}, 5$
c. $\quad i \sqrt{11},-5$
d. $i \sqrt{11},-i \sqrt{11}, 5$
26. A cubic polynomial with rational coefficients has the roots $2+\sqrt{7}$ and $\frac{3}{8}$. Find one additional root.
a. $2+\sqrt{7}$
b. $2-\sqrt{7}$
c. $7-\sqrt{2}$
d. $7+\sqrt{2}$
27. Are the polynomial functions given below even, odd, or neither?

Function I Function II

$$
f(x)=12 x^{5}-4 x^{2}+3 \quad f(x)=-x^{6}+3
$$

a. Function I: neither
c. Function I: even
Function II: odd Function II: odd
b. Function I: odd
d. Function I: neither
Function II: even
Function II: even
28. How does the graph of the function $f(x)=(x-15)^{3}+4$ differ from the graph of its parent cubic function?
a. The graph has been translated left 4 units and down 15 units.
b. The graph has been translated right 4 units and down 15 units.
c. The graph has been translated right 15 units and up 4 units.
d. The graph has been translated left 15 units and up 4 units.

What is the equation of $y=x^{3}$ with the given transformations?

29. vertical stretch by a factor of 8 , horizontal shift 2 units to the right, vertical shift 7 units down
a. $y=8(x+2)^{3}-7$
b. $y=8(x-2)^{3}-7$
c. $y=8(x-2)^{3}+7$
d. $y=\frac{1}{8}(x-2)^{3}-7$
30. What are all the real zeros of $y=(x-12)^{3}-10$?
a. $x=\sqrt[3]{10+12}$
b. $x=\sqrt[3]{-10}+12$
c. $x=\sqrt[3]{10}+12$
d. $x=\sqrt[3]{12}-10$

Alg 2 Topic 3 Practice
 Answer Section

1. ANS: A PTS: 1 DIF: L2 REF: 3-1 Graphing Polynomial Functions

OBJ: 3-1.1 Graph polynomial functions and show the key features of the graph.
NAT: HSA.SSE.A.1.a| HSF.IF.B.4| HSF.IF.C.7| HSF.IF.C.7.c
TOP: 3-1 Example 1 Classify Polynomials
KEY: degree of a polynomial | polynomial function | standard form of a polynomial function
2. ANS: D PTS: 1 DIF: L2 REF: 3-1 Graphing Polynomial Functions

OBJ: 3-1.1 Graph polynomial functions and show the key features of the graph.
NAT: HSA.SSE.A.1.a| HSF.IF.B.4| HSF.IF.C.7| HSF.IF.C.7.c
TOP: 3-1 Example 1 Classify Polynomials
KEY: degree of a polynomial | polynomial function | standard form of a polynomial function
3. ANS: CTS: 1 DIF: L4 REF: 3-1 Graphing Polynomial Functions

OBJ: 3-1.1 Graph polynomial functions and show the key features of the graph.
NAT: HSA.SSE.A.1.a| HSF.IF.B.4| HSF.IF.C.7| HSF.IF.C.7.c
TOP: 3-1 Example 3 Graph a Polynomial Function
KEY: polynomial function | end behavior | turning point
4. ANS: C PTS: 1 DIF: L3 REF: 3-1 Graphing Polynomial Functions

OBJ: 3-1.1 Graph polynomial functions and show the key features of the graph.
NAT: HSA.APR.A. 1 TOP: 3-1 Example 1 Classify Polynomials
KEY: monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a polynomial | trinomial
5. ANS: B PTS: 1 DIF: L3 REF: 3-1 Graphing Polynomial Functions

OBJ: 3-1.1 Graph polynomial functions and show the key features of the graph.
NAT: HSA.SSE.A.1| HSA.APR.B.3| HSF.IF.C.7| HSF.IF.C.7.c| HSF.BF.A. 1
TOP: 3-1 Example 3 Graph a Polynomial Function
KEY: relative maximum | relative minimum
6. ANS: C PTS: 1 DIF: L2 REF: 3-1 Graphing Polynomial Functions

OBJ: 3-1.2 Predict the end behavior of polynomial functions by interpreting the leading coefficients and
degrees. NAT: HSA.SSE.A.1.a| HSF.IF.B.4| HSF.IF.C.7| HSF.IF.C.7.c
TOP: 3-1 Example 2 Understand End Behavior of Polynomial Functions
KEY: polynomial | end behavior | turning point
7. ANS: D PTS: 1 DIF: L3

REF: 3-2 Adding, Subtracting, and Multiplying Polynomials
OBJ: 3-2.1 Add, subtract, and multiply polynomials and understand that polynomials are closed under these operations. NAT: HSA.APR.A. 1
TOP: 3-2 Example 1 Add and Subtract Polynomials
KEY: polynomial | standard form of a polynomial |trinomial
8. ANS: A PTS: $1 \quad$ DIF: L3

REF: 3-2 Adding, Subtracting, and Multiplying Polynomials
OBJ: 3-2.1 Add, subtract, and multiply polynomials and understand that polynomials are closed under these operations. NAT: HSA.APR.A. 1
TOP: 3-2 Example 1 Add and Subtract Polynomials
KEY: polynomial | standard form of a polynomial |trinomial
9. ANS: D PTS: 1 DIF: L3

REF: 3-2 Adding, Subtracting, and Multiplying Polynomials
OBJ: 3-2.1 Add, subtract, and multiply polynomials and understand that polynomials are closed under these operations. NAT: HSA.APR.A. 1
TOP: 3-2 Example 2 Multiply Polynomials
10. ANS: D PTS: 1 DIF: L3

REF: 3-2 Adding, Subtracting, and Multiplying Polynomials
OBJ: 3-2.1 Add, subtract, and multiply polynomials and understand that polynomials are closed under these operations. NAT: HSA.APR.A. 1
TOP: 3-2 Example 2 Multiply Polynomials KEY: multiplying binomials
11. ANS: B PTS: 1 DIF: L3 REF: 3-3 Polynomial Identities

OBJ: 3-3.1 Prove polynomial identities and use them to multiply and factor polynomials.
NAT: HSA.APR.A. 1
TOP: 3-3 Example 3 Use Polynomial Identities to Factor and Simplify
12. ANS: A PTS: 1 DIF: L2 REF: 3-3 Polynomial Identities

OBJ: 3-3.1 Prove polynomial identities and use them to multiply and factor polynomials.
NAT: HSA.APR.A. 1 TOP: 3-3 Example 2 Use Polynomial Identities to Multiply
13. ANS: A PTS: 1 DIF: L4 REF: 3-3 Polynomial Identities

OBJ: 3-3.1 Prove polynomial identities and use them to multiply and factor polynomials.
NAT: HSA.APR.A. 1
14. ANS: D PTS: 1 DIF: L3 REF: 3-3 Polynomial Identities

OBJ: 3-3.2 Expand binomials using the Binomial Theorem and coefficients determined by Pascal's Triangle.
NAT: HSA.APR.C. 5
TOP: 3-3 Example 5 Apply the Binomial Theorem KEY: Binomial Theorem| expand
15. ANS: A PTS: 1 DIF: L3 REF: 3-3 Polynomial Identities

OBJ: 3-3.2 Expand binomials using the Binomial Theorem and coefficients determined by Pascal's Triangle.
NAT: HSA.APR.C. 5
TOP: 3-3 Example 4 Expand a Power of a Binomial KEY: Pascal's Triangle | expand
16. ANS: C PTS: 1 DIF: L2 REF: 3-4 Dividing Polynomials

OBJ: 3-4.1 Divide polynomial expressions using long division.
NAT: HSA.APR.A.1|HSA.APR.B.2| HSA.APR.D. 6
TOP: 3-4 Example 1 Use Long Division to Divide Polynomials
17. ANS: A PTS: 1 DIF: L3 REF: 3-4 Dividing Polynomials

OBJ: 3-4.2 Use synthetic division to rewrite rational expressions.
NAT: HSA.APR.A.1|HSA.APR.B.2| HSA.APR.D. 6
TOP: 3-4 Example 2 Use Synthetic Division to Divide by x - a KEY: synthetic division
18. ANS: C PTS: 1 DIF: L3 REF: 3-4 Dividing Polynomials

OBJ: 3-4.2 Use synthetic division to rewrite rational expressions.
NAT: HSA.APR.A.1| HSA.APR.B.2| HSA.APR.D. 6
TOP: 3-4 Example 4 Use the Remainder Theorem to Evaluate Polynomials
KEY: synthetic division | remainder theorem
19. ANS: B PTS: 1 DIF: L2 REF: 3-5 Zeros of Polynomial Functions

OBJ: 3-5.1 Identify the zeros of a function by factoring or using synthetic division.
NAT: HSA.SSE.A.2| HSA.REI.A. 11 TOP: 3-5 Example 3 Find Real and Complex Zeros
KEY: sum of cubes | difference of cubes
20. ANS: B PTS: 1 DIF: L3 REF: 3-5 Zeros of Polynomial Functions

OBJ: 3-5.1 Identify the zeros of a function by factoring or using synthetic division.
NAT: HSA.SSE.A.1| HSA.APR.B.3| HSF.IF.C.7| HSF.IF.C.7.c| HSF.BF.A. 1
TOP: 3-5 Example 3 Find Real and Complex Zeros KEY: multiple zero | multiplicity
21. ANS: C PTS: 1 DIF: L3 REF: 3-5 Zeros of Polynomial Functions

OBJ: 3-5.2 Use the zeros of a polynomial function to sketch its graph.
NAT: HSA.SSE.A.1| HSA.APR.B.3| HSF.IF.C.7| HSF.IF.C.7.c| HSF.BF.A. 1
TOP: 3-5 Example 1 Use Zeros to Graph a Polynomial Function
22. ANS: B PTS: 1 DIF: L3 REF: 3-5 Zeros of Polynomial Functions

OBJ: 3-5.2 Use the zeros of a polynomial function to sketch its graph.
NAT: HSA.SSE.A.2| HSA.APR.B.3| HSF.IF.C.7.C
TOP: 3-5 Example 6 Solve a Polynomial Inequality by Graphing
KEY: polynomial inequality
23. ANS: D PTS: 1 DIF: L2

REF: 3-6 Theorems About Roots of Polynomial Equations
OBJ: 3-6.1 Extend polynomial theorems and identities to find the real and complex solutions of polynomial equations. NAT: HSN.CN.C.7| HSN.CN.C. $8 \mid$ HSN.CN.C. $9 \mid$ HSA.APR.B. 3
TOP: 3-6 Example 3 Find All Complex Roots KEY: Rational Root Theorem
24. ANS: B PTS: 1 DIF: L2

REF: 3-6 Theorems About Roots of Polynomial Equations
OBJ: 3-6.1 Extend polynomial theorems and identities to find the real and complex solutions of polynomial equations. NAT: HSN.CN.C.7| HSN.CN.C. 8
TOP: 3-6 Example 2 Use the Rational Root Theorem KEY: Rational Root Theorem
25. ANS: D PTS: 1 DIF: L3

REF: 3-6 Theorems About Roots of Polynomial Equations
OBJ: 3-6.1 Extend polynomial theorems and identities to find the real and complex solutions of polynomial equations. NAT: HSN.CN.C.7| HSN.CN.C. 8
TOP: 3-6 Example 3 Find All Complex Roots KEY: Rational Root Theorem
26. ANS: B PTS: 1 DIF: L3

REF: 3-6 Theorems About Roots of Polynomial Equations
OBJ: 3-6.2 Write polynomial functions using conjugates. NAT: HSN.CN.C.7| HSN.CN.C. 8
TOP: 3-6 Example 5 Write Polynomial Functions Using Conjugates
KEY: Conjugate Root Theorem
27. ANS: D PTS: 1 DIF: L2

REF: 3-7 Transformations of Polynomial Functions
OBJ: 3-7.1 Recognize even and odd functions from their graphs and algebraic equations.
NAT: HSF.BF.B. 3 TOP: 3-7 Example 2 Identify Even and Odd Functions From Their Equations
KEY: even functions | odd functions
28. ANS: C PTS: 1 DIF: L3

REF: 3-7 Transformations of Polynomial Functions
OBJ: 3-7.2 Identify the effect on the graphs of cubic and quartic functions of replacing $f(x)$ with $f(x)+k$, $\mathrm{kf}(\mathrm{x}), \mathrm{f}(\mathrm{kx})$ and $\mathrm{f}(\mathrm{x}+\mathrm{k})$.

NAT: HSF.BF.B. 3
TOP: 3-7 Example 5 Apply a Transformation of a Cubic Function
KEY: transformations | cubic functions
29. ANS: B PTS: 1 DIF: L3

REF: 3-7 Transformations of Polynomial Functions
OBJ: 3-7.2 Identify the effect on the graphs of cubic and quartic functions of replacing $f(x)$ with $f(x)+k$, $\mathrm{kf}(\mathrm{x}), \mathrm{f}(\mathrm{kx})$ and $\mathrm{f}(\mathrm{x}+\mathrm{k})$.

NAT: HSF.IF.C.7.c| HSF.IF.C.8| HSF.IF.C.9| HSF.BF.B. 3
TOP: 3-7 Example 4 Identify a Transformation
30. ANS: C PTS: 1 DIF: L3

REF: 3-7 Transformations of Polynomial Functions
OBJ: 3-7.2 Identify the effect on the graphs of cubic and quartic functions of replacing $f(x)$ with $f(x)+k$, $\mathrm{kf}(\mathrm{x}), \mathrm{f}(\mathrm{kx})$ and $\mathrm{f}(\mathrm{x}+\mathrm{k})$. NAT: HSF.IF.C.7.c| HSF.IF.C.8| HSF.IF.C.9| HSF.BF.B. 3 TOP: 3-7 Example 3 Graph Transformations of Cubic and Quartic Parent Functions

