Name

4-2 Reteach to Build Understanding

Graphing Rational Functions

The horizontal asymptote is determined by looking at the degrees of the numerator n and denominator m.

If n < m, then y = 0. If n = m, then $y = \frac{a_n}{b_m}$, where a_n is the leading coefficient of the numerator and b_m is the leading coefficient of the denominator.

enVision Algebra 2

PearsonRealize.com

If n > m, there is no horizontal asymptote.

To find the vertical asymptote, set the denominator equal to 0 and solve for x.

1. Circle the horizontal asymptote of the graph of the function $f(x) = \frac{5x+5}{x+2}$. Use $y = \frac{a_n}{b_m}$, where $a_n = 5$ and $b_m = 1$.

a.
$$-\frac{5}{1} = -5$$
 b. $\frac{-2}{1} = -2$ **c.** $\frac{2}{1} = 2$ **d.** $\frac{5}{1} = 5$

2. Circle the correct vertical asymptote of the graph of the function $f(x) = \frac{3x+6}{x+4}$. If x + 4 = 0, then x = ?

- **3.** A student described the asymptotes of the graph of the function $y = \frac{9x+6}{3x+3}$. The student states there were no horizontal asymptotes and the vertical asymptote is x = 0. Find the student's error(s) and fix them.
- **4.** Use the function $f(x) = \frac{2x+8}{2x+2}$.
 - a. What is the horizontal asymptote(s) of the graph of the function?

$$y = \frac{a_n}{b_m}$$
 where $a_n = 2$ and $b_m =$ _____, so then $y =$ ______

b. What is the vertical asymptote(s) of the graph of the function? 2x + 2 = 0, so then x =