4-2 Reteach to Build Understanding

Graphing Rational Functions

The horizontal asymptote is determined by looking at the degrees of the numerator n and denominator m.

If $n<m$, then $y=0$.
If $n=m$, then $y=\frac{a_{n}}{b_{m}}$, where a_{n} is the leading coefficient of the numerator and b_{m} is the leading coefficient of the denominator.

If $n>m$, there is no horizontal asymptote.
To find the vertical asymptote, set the denominator equal to 0 and solve for x.

1. Circle the horizontal asymptote of the graph of the function $f(x)=\frac{5 x+5}{x+2}$.

Use $y=\frac{a_{n}}{b_{m}}$, where $a_{n}=5$ and $b_{m}=1$.
a. $-\frac{5}{1}=-5$
b. $\frac{-2}{1}=-2$
c. $\frac{2}{1}=2$
d. $\frac{5}{1}=5$
2. Circle the correct vertical asymptote of the graph of the function $f(x)=\frac{3 x+6}{x+4}$. If $x+4=0$, then $x=$?
a. -4
b. -3
c. 3
d. 4
3. A student described the asymptotes of the graph of the function $y=\frac{9 x+6}{3 x+3}$. The student states there were no horizontal asymptotes and the vertical asymptote is $x=0$. Find the student's error(s) and fix them.
4. Use the function $f(x)=\frac{2 x+8}{2 x+2}$.
a. What is the horizontal asymptote(s) of the graph of the function? $y=\frac{a_{n}}{b_{m}}$ where $a_{n}=2$ and $b_{m}=$ \qquad so then $y=$ \qquad
b. What is the vertical asymptote(s) of the graph of the function?
$2 x+2=0$, so then $x=$ \qquad

