PRACTICE & PROBLEM SOLVING

UNDERSTAND

- **13.** Model With Mathematics In the expression $PV^{\overline{3}}$, *P* represents the pressure and *V* represents the volume of a sample of a gas. Evaluate the expression for *P* = 7 and *V* = 8.
- **14.** Reason Describe the possible values of k such that $\sqrt{32} + \sqrt{k}$ can be rewritten as a single term.
- **15. Error Analysis** Explain why the following work is incorrect. Find the correct answer.

$$5\left(4-5^{\frac{1}{2}}\right) = 5(4) - 5\left(5^{\frac{1}{2}}\right)$$
$$= 20 - 25^{\frac{1}{2}}$$
$$= 15$$

- **16.** Communicate Precisely Discuss the advantages and disadvantages of first rewriting $\sqrt{27} + \sqrt{48} + \sqrt{147}$ in order to estimate its decimal value.
- **17. Higher Order Thinking** Write $\sqrt{\frac{4}{5}}$ in two different ways, one where the numerator is simplified and another where the denominator is rationalized.
- **18. Construct Arguments** Justify each step used in simplifying the expression below.

$$\left(\frac{a^2}{\frac{3}{a^4}}\right)^{\frac{1}{5}} = \left(a^{2-\frac{3}{4}}\right)^{\frac{1}{5}}$$
$$= \left(a^{\frac{5}{4}}\right)^{\frac{1}{5}}$$
$$= a^{\frac{1}{4}}$$
$$= \sqrt[4]{a}$$

PRACTICE

What is the reduced radical form of each

EXAMPLE 1
19.
$$(_{3x}^{\frac{1}{2}}) (_{4x}^{\frac{2}{3}})$$
20. $2b^{\frac{1}{2}} (_{3b}^{\frac{1}{2}}c^{\frac{1}{3}})^2$
21. $(x^{\frac{1}{2}} \cdot x^{\frac{5}{12}})^4 \div x^{\frac{2}{3}}$
22. $(\frac{16c^{14}}{81d^{18}})^{\frac{1}{2}}$

What is the reduced radical form of each expression? SEE EXAMPLE 2

23.
$$\sqrt[3]{250y^2z^4}$$
24. $\sqrt[4]{256v^7w^{12}}$
25. $\sqrt{\frac{48x^3}{3xy^2}}$
26. $\sqrt{\frac{56x^5y^5}{7xy}}$
27. $\sqrt[3]{216m}$
28. $\sqrt[3]{\frac{250f^7g^3}{27}}$

What is the reduced radical form of each expression? SEE EXAMPLE 3

√ 2f²q

29.
$$\sqrt{x^5y^5} \cdot 3\sqrt{2x^7y^6}$$
30. $\sqrt[3]{\frac{18n^2}{24n}}$
31. $\sqrt[3]{3x^2} \cdot \sqrt[3]{x^2} \cdot \sqrt[3]{9x^3}$
32. $\sqrt{\frac{162a}{6a^3}}$
33. $\sqrt[5]{2pq^6} \cdot 2\sqrt{2p^3q}$
34. $\sqrt[3]{\frac{x^2}{9y}}$
35. $\sqrt[3]{6} \cdot \sqrt[3]{16}$
36. $\sqrt[4]{\frac{2}{5x}}$

What is the reduced radical form of each expression? SEE EXAMPLE 4

37. 4∛81 – 2∛72 – ∛24	38. $6\sqrt{45y^2} - 4\sqrt{20y^2}$
39. 3√12 - √54 + 7√75	40. $\sqrt{32h} + 4\sqrt{98h} - 3\sqrt{50h}$

Multiply. SEE EXAMPLE 5

41. $(3\sqrt{p} - \sqrt{5})(\sqrt{p} + 5\sqrt{5})$ **42.** $(4m - \sqrt{3})(4m - \sqrt{3})$

43. $(3\sqrt{2} + 8)(3\sqrt{2} - 8)$ **44.** $\sqrt[3]{3}(5\sqrt[3]{9} - 4)$

What is the reduced radical form of each expression? SEE EXAMPLE 6

45.
$$\frac{4}{1-\sqrt{3}}$$
 46. $\frac{20}{3+\sqrt{2}}$

47.
$$\frac{3+\sqrt{8}}{2-2\sqrt{8}}$$
 48. $\frac{-2x}{3+\sqrt{x}}$

PRACTICE & PROBLEM SOLVING

APPLY

- 49. Model With Mathematics A triangular swimming area is marked off by a rope.
 - a. If a woman swims around the perimeter of the swimming area, how far will she swim?
 - b. What is the area of the roped off section?

- 50. Use Structure The interest rate r required to increase your investment p to the amount a in *m* months is found by $r = \left(\frac{a}{p}\right)^{\frac{1}{m}} - 1$. What interest rate would be required to increase your investment of \$3,600 to \$6,400 over 7 months? Round your answer to the nearest tenth of a percent.
- 51. Use Structure The length of a rectangle is $(2 + \sqrt{5})y$. The width is $(4 + 3\sqrt{5})z$. What is the area of the rectangle?

52. Model With Mathematics A rectangular boardroom table is $\sqrt{440}$ ft by $\sqrt{20}$ ft. Find its area.

ASSESSMENT PRACTICE

53. Aaron is rewriting $\frac{1+\sqrt{3}}{5-\sqrt{3}}$ into reduced radical form. Determine if Aaron would have written the steps below to show his work. Select Yes or No.

	Yes	No
$\frac{6+4\sqrt{3}-3}{25+9}$		
$\frac{5+\sqrt{3}+5\sqrt{3}+\sqrt{9}}{25+5\sqrt{3}-5\sqrt{3}-\sqrt{9}}$		
$\frac{4+3\sqrt{3}}{11}$		
$\frac{8+6\sqrt{3}}{28}$		
$\frac{5+6\sqrt{3}+3}{25-3}$		

54. SAT/ACT Which expression cannot be rewritten as -10?

(A) √25 • ∛-8	® ∛–125 • ∜16
© – ∛ 1,000	[®] –√25 • √−32
$\textcircled{E}\sqrt{4} \bullet - \sqrt[3]{125}$	

55. Performance Task The volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.

Part A Use the formula to find r in terms of V. Rationalize the denominator.

Part B A snowman is made using three spherical snowballs. The top snowball for the head has a volume of 500 in.³. What is the diameter of the top snowball?

Part C The volumes of the other two snowballs are 750 in.³ and 1,000 in.³. How tall is the snowman?

