5-2 Reteach to Build Understanding

Properties of Exponents and Radicals

1. Complete the table.

	$\begin{aligned} & \text { Meaning } \\ & \text { (assuming bases } \end{aligned}$ are equal)	Algebra	Numbers
Product of Powers	Add the exponents	$x^{a} \cdot x^{b}=x^{a+b}$	$2^{3} \cdot 2^{2}={ }_{-}^{3+2}=2$
Quotient of Powers	Subtract the exponents	$\frac{x^{a}}{x^{b}}=x^{a-b}$	$\frac{2^{3}}{2^{2}}=2_{-}-2={ }_{-}^{1}$
Power of a Power	Multiply the exponents	$\left(x^{a}\right)^{b}=x^{a \cdot b}$	$\left(2^{3}\right)^{2}=2{ }_{--}={ }_{-}^{6}$
Power of a Product	Distribute each exponent to each term	$(x y)^{a}=x^{a} y^{a}$	$(2 \cdot 4)^{3}={ }^{3}{ }^{3}={ }_{-} .64$
Negative Exponent	Change the sign of the exponent and write the reciprocal	$x^{-a}=\frac{1}{x^{a}}$	$2^{-}=\frac{1}{2^{3}}$

2. Drew was asked to simplify the expression $\sqrt[4]{6 x} \cdot \sqrt[3]{4 x}$. His final solution was $55,296 x$.
Look at his work and circle where he made his mistake. Then write the correct answer.

$$
\begin{aligned}
& \sqrt[4]{6 x} \cdot \sqrt[3]{4 x} \\
& (6 x)^{\frac{1}{4}} \cdot(4 x)^{\frac{1}{3}} \\
& (6 x)^{\frac{3}{12}} \cdot(4 x)^{\frac{4}{12}} \\
& \left((6 x)^{3} \cdot(4 x)^{4}\right)^{\frac{1}{12}} \\
& \left(216 x^{3} \cdot 256 x^{4}\right)^{\frac{1}{12}} \\
& \sqrt[12]{55,296 x^{12}}=55,296 x
\end{aligned}
$$

3. What is the sum of $\sqrt{12}+\sqrt[3]{54}-\sqrt{3}-\sqrt[3]{128}$? Fill in the blanks.

$$
\begin{aligned}
& \sqrt{12}-\sqrt{3}+\sqrt[3]{54}-\sqrt[3]{128} \\
& 2 \sqrt{-}-\sqrt{3}+-\sqrt[3]{2}-4 \sqrt[3]{2} \\
& (2--) \sqrt{-}+(--4) \sqrt[3]{2} \\
& \sqrt{3}-\sqrt[3]{\square}
\end{aligned}
$$

Group radical terms with like indices.
Simplify each radical term.
Factor out the radicals using the Distributive Property.

Combine like radical terms.

