PearsonRealize.com

5-2 Reteach to Build Understanding

Properties of Exponents and Radicals

1. Complete the table.

	Meaning (assuming bases are equal)	Algebra	Numbers
Product of Powers	Add the exponents	$x^a \cdot x^b = x^{a+b}$	$2^3 \cdot 2^2 = _3^{3+2} = 2_{-}$
Quotient of Powers	Subtract the exponents	$\frac{x^a}{x^b} = x^{a-b}$	$\frac{2^3}{2^2} = 2^{-2} = 1$
Power of a Power	Multiply the exponents	$(x^a)^b = x^{a \cdot b}$	$(2^3)^2 = 2^- = 6$
Power of a Product	Distribute each exponent to each term	$(xy)^a = x^a y^a$	$(2\cdot4)^3 = {}^3_{-}{}^3 = {}_{-} \cdot 64$
Negative Exponent	Change the sign of the exponent and write the reciprocal	$\chi^{-a} = \frac{1}{\chi^a}$	$2^{-}_{-} = \frac{1}{2^{3}}$

2. Drew was asked to simplify the expression $\sqrt[4]{6x} \cdot \sqrt[3]{4x}$. His final solution was 55,296x. Look at his work and circle where he made his mistake. Then write the correct answer.

$$\sqrt[4]{6x} \cdot \sqrt[3]{4x}$$

$$(6x)^{\frac{1}{4}} \cdot (4x)^{\frac{1}{3}}$$

$$(6x)^{\frac{3}{12}} \cdot (4x)^{\frac{4}{12}}$$

$$((6x)^{3} \cdot (4x)^{4})^{\frac{1}{12}}$$

$$(216x^{3} \cdot 256x^{4})^{\frac{1}{12}}$$

$$\sqrt[12]{55,296x^{12}} = 55,296x$$

3. What is the sum of $\sqrt{12} + \sqrt[3]{54} - \sqrt{3} - \sqrt[3]{128}$? Fill in the blanks.

$$\sqrt{12} - \sqrt{3} + \sqrt[3]{54} - \sqrt[3]{128}$$

$$2\sqrt{2} - \sqrt{3} + 2\sqrt[3]{2} - 4\sqrt[3]{2}$$

$$(2 - 2\sqrt{2}) \sqrt{2} + (2\sqrt{2} - 4\sqrt{2})$$

$$\sqrt{3} - \sqrt[3]{}$$

Group radical terms with like indices.

Simplify each radical term.

Factor out the radicals using the Distributive Property.

Combine like radical terms.