\qquad
\qquad
\qquad

Alg 2 Topic 6.1 to 6.6 Test Practice

\qquad 1. An initial population of 820 quail increases at an annual rate of 23%. Write an exponential function to model the quail population. What will the approximate population be after 3 years?
a. $f(x)=820(1.23)^{x} ; 1526$
b. $f(x)=820(23)^{x} ; 9,976,940$
c. $f(x)=(820 \cdot 0.23)^{x} ; 6,708,494$
d. $f(x)=820(0.23)^{x} ; 1526$
2. The half-life of a certain radioactive material is 32 days. An initial amount of the material has a mass of 361 kg . Write an exponential function that models the decay of this material. Find how much radioactive material remains after 5 days. Round your answer to the nearest thousandth.
a. $y=361\left(\frac{1}{2}\right)^{32 x} ; 0 \mathrm{~kg}$
b. $\quad y=361\left(\frac{1}{2}\right)^{\frac{1}{32} x} ; 323.945 \mathrm{~kg}$
c. $y=2\left(\frac{1}{361}\right)^{\frac{1}{32} x} ; 0.797 \mathrm{~kg}$
d. $y=\frac{1}{2}\left(\frac{1}{361}\right)^{\frac{1}{32} x} ; 0.199 \mathrm{~kg}$

Graph the function.
\qquad 3. $y=\frac{1}{5}(3)^{x}$
a.

c.

b.

d.

4. $y=5\left(\frac{1}{4}\right)^{x}+2$
a.

c.

b.

d.

5. You open a savings account and deposit $\$ 1,000$. After 1 year of earning continuously compounded interest, your balance is $\$ 1,018.16$. After 2 years, the balance is $\$ 1,036.66$. Assuming you make no deposits or withdrawals, find the equation for the best-fitting exponential function to represent the balance of the account after x years. How much money will be in the account after 10 years?
a. $\quad A=1000 \cdot e^{1.8}, \$ 6,049.65$
b. $A=1000+e^{0.018 t}, \$ 1,001.20$
c. $A=1000 \cdot e^{0.018 t}, \$ 1,197.22$
d. $A=1000 \cdot e^{1.8{ }^{*} t}, \$ 1,001.20$
\qquad 6. Suppose you invest $\$ 1600$ at an annual interest rate of 4.6% compounded continuously. How much will you have in the account after 4 years?
a. $\quad \$ 800.26$
b. $\$ 6,701.28$
c. $\$ 10,138.07$
d. $\$ 1,923.23$

Write the equation in logarithmic form.
7. $2^{5}=32$
a. $\quad \log 32=5 \cdot 2$
b. $\quad \log _{2} 32=5$
c. $\quad \log 32=5$
d. $\quad \log _{5} 32=2$

Write the equation in exponential form.
8. $\log _{4} \frac{1}{16}=-2$
a. $4^{\frac{1}{2}}=16$
b. $4^{2}=16$
c. $16^{\frac{1}{2}}=4$
d. $4^{-2}=\frac{1}{16}$

Evaluate the logarithm.
9. $\log _{5} \frac{1}{625}$
a. -3
b. 5
c. -4
d. 4
10. $\log _{3} 243$
a. 5
b. -5
c. 4
d. 3

Use natural logarithms to solve the equation. Round to the nearest thousandth.
11. $6 e^{4 x}-2=3$
a. -0.448
b. 0.327
c. 0.067
d. -0.046

Graph the logarithmic equation.

12. Graph $y=\log _{5} x$ and its inverse.
a.

c.

b.

d.

13. A construction explosion has an intensity I of $4.85 \times 10^{-2} \mathrm{~W} / \mathrm{m}^{2}$. Find the loudness of the sound in decibels if $L=10 \log \frac{I}{I_{0}}$ and $I_{o}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$. Round to the nearest tenth.
a. $\quad 146.9$ decibels
b. $\quad 115.8$ decibels
c. $\quad 106.9$ decibels
d. 48.5 decibels

Expand the logarithmic expression.
\qquad 14. $\log _{3} 11 p^{3}$
a. $\log _{3} 11 \cdot 3 \log _{3} p$
b. $\quad \log _{3} 11-3 \log _{3} p$
c. $\quad \log _{3} 11+3 \log _{3} p$
d. $11 \log _{3} p^{3}$
15. $\log _{3} \frac{d}{12}$
a. $\quad \log _{3} d-\log _{3} 12$
b. $-d \log _{3} 12$
c. $\frac{\log _{3} d}{\log _{3} 12}$
d. $\log _{3} 12-\log _{3} d$

Write the expression as a single natural logarithm.
16. $3 \ln x-2 \ln c$
a. $\ln \frac{x^{3}}{c^{2}}$
b. $\quad \ln \left(x^{3}+c^{2}\right)$
c. $\quad \ln \left(x^{3}-c^{2}\right)$
d. $\quad \ln x^{3} c^{2}$

Write the expression as a single logarithm.

17. $3 \log _{b} q+6 \log _{b} v$
a. $\log _{b}\left(q^{3} v^{6}\right)$
b. $\log _{b}\left(q v^{3+6}\right)$
c. $(3+6) \log _{b}(q+v)$
d. $\quad \log _{b}\left(q^{3}+v^{6}\right)$
18. $\log _{7} 50-\log _{7} 5$
a. $\quad \log 45$
b. $\quad \log _{7} 45$
c. $\quad \log _{7} 10$
d. $\quad \log 10$
19. What is the value of $\log _{81} 3$?
a. 3
b. $\frac{1}{4}$
c. 4
d. $\frac{1}{3}$
20. Use the Change of Base Formula to evaluate $\log _{3} 91$.
a. 4.106
b. 1.959
c. 4.511
d. 1.504
21. Use the Change of Base Formula to evaluate $\log _{7} 40$.
a. 0.527
b. 1.602
c. $\quad 3.689$
d. 1.896

Solve the logarithmic equation. Round to the nearest ten-thousandth if necessary.

22. Solve $\log (4 x+10)=3$.
a. $-\frac{7}{4}$
b. $\frac{495}{2}$
c. 250
d. 990
23. Solve $\log 5 x+\log 14=1$. Round to the nearest hundredth if necessary.
a. 28
b. 0.14
c. $\quad 3.57$
d. 700

Solve the exponential equation.
24. $4^{4 x}=8$
a. $\frac{3}{4}$
b. $\frac{8}{3}$
c. $\frac{3}{8}$
d. 2
25. The sales of lawn mowers t years after a particular model is introduced is given by the function $y=5500 \ln (9 t+4)$, where y is the number of mowers sold. How many mowers will be sold 4 years after a model is introduced? Round the answer to the nearest whole number.
a. 20,289 mowers
c. 8,811 mowers
b. 41,709 mowers
d. 19,713 mowers

Alg 2 Topic 6.1 to 6.6 Test Practice Answer Section

1. ANS: A PTS: 1 DIF: L3

REF: 6-1 Key Features of Exponential Functions
OBJ: 6-1.1 Interpret key features of exponential functions represented by graphs, tables, and equations.
NAT: HSA.SSE.A.1.b| HSA.CED.A.2| HSF.IF.C.7.e
TOP: 6-1 Example 3 Model with Exponential Functions
KEY: exponential growth | exponential function
2. ANS: B PTS: 1 DIF: L3

REF: 6-1 Key Features of Exponential Functions
OBJ: 6-1.1 Interpret key features of exponential functions represented by graphs, tables, and equations.
NAT: HSA.SSE.A.1.b| HSA.CED.A.2| HSF.IF.C.7| HSF.IF.C.7.e| HSF.IF.C.8| HSF.BF.A.1|HSF.BF.A.1.b
TOP: 6-1 Example 3 Model with Exponential Functions KEY: exponential function
3. ANS: B PTS: 1 DIF: L2

REF: 6-1 Key Features of Exponential Functions
OBJ: 6-1.2 Graph transformations of exponential functions showing intercepts and end behavior.
NAT: HSA.SSE.A.1.b| HSA.CED.A.2| HSF.IF.C.7| HSF.IF.C.7.e| HSF.IF.C.8| HSF.BF.A.1|HSF.BF.A.1.b
TOP: 6-1 Example 2 Graph Transformations of Exponential Functions
KEY: exponential function
4. ANS: D PTS: 1 DIF: L3

REF: 6-1 Key Features of Exponential Functions
OBJ: 6-1.2 Graph transformations of exponential functions showing intercepts and end behavior.
NAT: HSA.SSE.A.1.b| HSA.CED.A.2| HSF.IF.C.7| HSF.IF.C.7.e| HSF.IF.C.8| HSF.BF.A.1|HSF.BF.A.1.b
TOP: 6-1 Example 2 Graph Transformations of Exponential Functions
KEY: exponential function
5. ANS: C PTS: 1 DIF: L4 REF: 6-2 Exponential Models

OBJ: 6-2.2 Interpret the parameters of an exponential function within the context of compound interest problems.
NAT: HSA.SSE.A.1.b| HSA.CED.A.2| HSF.IF.C.7| HSF.IF.C.7.e| HSF.IF.C.8| HSF.BF.A.1| HSF.BF.A.1.b
TOP: 6-2 Example 4 Find Continuously Compounded Interest
KEY: compare properties of two functions \mid continuously compounded interest
6. ANS: D PTS: 1 DIF: L2 REF: 6-2 Exponential Models

OBJ: 6-2.2 Interpret the parameters of an exponential function within the context of compound interest problems.
NAT: HSA.SSE.A.1.b| HSA.CED.A.2| HSF.IF.C.7| HSF.IF.C.7.e| HSF.IF.C.8| HSF.BF.A.1|HSF.BF.A.1.b
TOP: 6-2 Example 4 Find Continuously Compounded Interest KEY: continuously compounded interest
7. ANS: B PTS: 1 DIF: L2 REF: 6-3 Logarithms

OBJ: 6-3.1 Understand the inverse relationship between exponents and logarithms.
NAT: HSA.SSE.A.1.b| HSF.IF.C.7.e| HSF.IF.C.8| HSF.IF.C.9| HSF.BF.B.4.a
TOP: 6-3 Example 2 Convert Between Exponential and Logarithmic Forms
KEY: write a function in different but equivalent forms
8. ANS: D PTS: 1 DIF: L4 REF: 6-3 Logarithms

OBJ: 6-3.1 Understand the inverse relationship between exponents and logarithms.
NAT: HSA.SSE.A.1.b| HSF.IF.C.7.e| HSF.IF.C.8| HSF.IF.C.9| HSF.BF.B.4.a
TOP: 6-3 Example 2 Convert Between Exponential and Logarithmic Forms
KEY: write a function in different but equivalent forms
9. ANS: CTS: 1 DIF: L3 REF: 6-3 Logarithms

OBJ: 6-3.3 Evaluate logarithms using technology.
NAT: HSA.SSE.A.1.b| HSF.IF.C.7.e| HSF.IF.C.8| HSF.IF.C.9| HSF.BF.B.4.a
TOP: 6-3 Example 3 Evaluate Logarithms KEY: logarithm
10. ANS: A PTS: 1 DIF: L2 REF: 6-3 Logarithms

OBJ: 6-3.3 Evaluate logarithms using technology.
NAT: HSA.SSE.A.1.b| HSF.IF.C.7.e| HSF.IF.C.8| HSF.IF.C.9| HSF.BF.B.4.a
TOP: 6-3 Example 3 Evaluate Logarithms KEY: logarithm
11. ANS: D PTS: 1 DIF: L3 REF: 6-3 Logarithms

OBJ: 6-3.3 Evaluate logarithms using technology.
NAT: HSF.BF.B.4.A| HSF.BF.B.5(+)| HSF.LE.A. 4
TOP: 6-3 Example 5 Solve Equations With Logarithms KEY: natural logarithmic function
12. ANS: C PTS: 1 DIF: L4 REF: 6-4 Logarithmic Functions

OBJ: 6-4.1 Graph logarithmic functions, and interpret their key features.
NAT: HSA.SSE.A.1.b| HSF.IF.C.7.e| HSF.IF.C.8| HSF.IF.C.9| HSF.BF.B.4.a
TOP: 6-4 Example 3 Inverses of Exponential and Logarithmic Functions
KEY: compare properties of two functions| logarithmic function
13. ANS: C PTS: 1 DIF: L3 REF: 6-5 Properties of Logarithms

OBJ: 6-5.1 Use Properties of Logarithms to rewrite logarithmic expressions.
NAT: HSA.SSE.A.2| HSA.REI.A.1| HSF.LE.A. 4
TOP: 6-5 Example 4 Apply Properties of Logarithms
14. ANS: C PTS: 1 DIF: L3 REF: 6-5 Properties of Logarithms

OBJ: 6-5.1 Use Properties of Logarithms to rewrite logarithmic expressions.
NAT: HSA.SSE.A.2| HSA.REI.A.1| HSF.LE.A. 4
TOP: 6-5 Example 2 Expand Logarithmic Expressions
15. ANS: A PTS: 1 DIF: L2 REF: 6-5 Properties of Logarithms

OBJ: 6-5.1 Use Properties of Logarithms to rewrite logarithmic expressions.
NAT: HSA.SSE.A.2| HSA.REI.A.1| HSF.LE.A. 4
TOP: 6-5 Example 2 Expand Logarithmic Expressions
16. ANS: A PTS: 1 DIF: L3 REF: 6-5 Properties of Logarithms

OBJ: 6-5.1 Use Properties of Logarithms to rewrite logarithmic expressions.
NAT: HSA.SSE.A. 2 HSA.REI.A.1| HSF.LE.A. 4
TOP: 6-5 Example 3 Write Expressions as Single Logarithms KEY: natural logarithmic function
17. ANS: A PTS: 1 DIF: L3 REF: 6-5 Properties of Logarithms

OBJ: 6-5.1 Use Properties of Logarithms to rewrite logarithmic expressions.
NAT: HSA.SSE.A.2| HSA.REI.A.1| HSF.LE.A. 4
TOP: 6-5 Example 3 Write Expressions as Single Logarithms
18. ANS: C PTS: 1 DIF: L2 REF: 6-5 Properties of Logarithms

OBJ: 6-5.1 Use Properties of Logarithms to rewrite logarithmic expressions.
NAT: HSA.SSE.A.2| HSA.REI.A.1| HSF.LE.A. 4
TOP: 6-5 Example 3 Write Expressions as Single Logarithms
19. ANS: B PTS: 1 DIF: L2 REF: 6-5 Properties of Logarithms

OBJ: 6-5.2 Use the Change of Base Formula to evaluate logarithmic expressions and solve equations.
NAT: HSA.SSE.A.2| HSA.REI.A.1| HSF.LE.A. 4
TOP: 6-5 Example 6 Use the Change of Base Formula
KEY: Change of Base Formula
20. ANS: A PTS: 1 DIF: L2 REF: 6-5 Properties of Logarithms

OBJ: 6-5.2 Use the Change of Base Formula to evaluate logarithmic expressions and solve equations.
NAT: HSA.SSE.A.2| HSA.REI.A.1| HSF.LE.A. 4
TOP: 6-5 Example 6 Use the Change of Base Formula KEY: Change of Base Formula
21. ANS: D PTS: 1 DIF: L3 REF: 6-5 Properties of Logarithms

OBJ: 6-5.2 Use the Change of Base Formula to evaluate logarithmic expressions and solve equations.
NAT: HSA.SSE.A.2| HSA.REI.A.1| HSF.LE.A. 4
TOP: 6-5 Example 6 Use the Change of Base Formula KEY: Change of Base Formula
22. ANS: B PTS: 1 DIF: L3

REF: 6-6 Exponential and Logarithmic Equations
OBJ: 6-6.2 Solve exponential and logarithmic equations.
NAT: HSA.REI.A. 11
TOP: 6-6 Example 5 Solve Logarithmic Equations KEY:
logarithmic equation
23. ANS: B PTS: 1 DIF: L3

REF: 6-6 Exponential and Logarithmic Equations
OBJ: 6-6.2 Solve exponential and logarithmic equations. NAT: HSA.REI.A. 11
TOP: 6-6 Example 5 Solve Logarithmic Equations KEY: logarithmic equation
24. ANS: C PTS: 1 DIF: L2

REF: 6-6 Exponential and Logarithmic Equations
OBJ: 6-6.2 Solve exponential and logarithmic equations. NAT: HSA.REI.A. 11
TOP: 6-6 Example 1 Solve Exponential Equations Using a Common Base
KEY: exponential equation
25. ANS: A PTS: 1 DIF: L3

REF: 6-6 Exponential and Logarithmic Equations
OBJ: 6-6.2 Solve exponential and logarithmic equations.
NAT: HSA.SSE.A.2| HSA.CED.A.1| HSA.REI.A.1| HSF.LE.A. 4
TOP: 6-6 Example 5 Solve Logarithmic Equations KEY:
natural logarithmic function

