
UNDERSTAND

7. Look for Relationships Are the logarithmic and exponential functions shown inverses of each other? Explain.

- 8. Communicate Precisely How is the graph of the logarithmic function $g(x) = \log_2 (x - 7)$ related to the graph of the function $f(x) = \log_2 x$? Explain your reasoning.
- 9. Error Analysis Describe and correct the error a student made in finding the inverse of the exponential function $f(x) = 5^{x-6} + 2$.

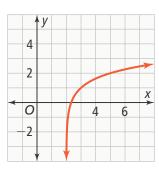
$$y = 5^{x-6} + 2$$

$$x = 5^{y-6} + 2$$

$$x - 2 = 5^{y-6}$$

$$y - 6 = \log_5 x - 2$$

$$y = \log_5 x - 2 + 6$$


 $y = \log_5 x + 4$

 $f'(x) = \log_5 x + 4$

Write in y = f(x) form. Interchange x and y. Subtract 2 from each side. Rewrite in logarithmic form. Add 6 to each side. Simplify.

- 10. Make Sense and Persevere The number of members m who joined a new workout center w weeks after opening is modeled by the equation $m = 1.6^{w+2}$, where $0 \le w \le 10$. Find the inverse of the function and explain what the inverse tells you.
- **11. Use Structure** The graph shows a transformation of the parent graph $f(x) = \log_3 x$. Write an equation for the graph.

PRACTICE

Graph each function and identify the domain and range. List any intercepts or asymptotes. Describe the end behavior. SEE EXAMPLE 1

12.
$$y = \log_5 x$$

13.
$$y = \log_8 x$$

14.
$$y = \log_{\frac{3}{10}} x$$

15.
$$y = \log_{0.1} x$$

Describe the graph in terms of transformations of the parent function $f(x) = \log_6 x$. Compare the asymptote and x-intercept of the given function to the parent function. SEE EXAMPLE 2

16.
$$g(x) = \frac{1}{2} \log_6 x$$

17.
$$g(x) = \log_6(-x)$$

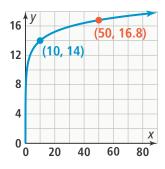
18. Describe how the graph of $g(x) = -\ln(x + 0.5)$ is related to the graph of $f(x) = \ln x$. SEE EXAMPLE 2

Find the equation of the inverse of each function.

SEE EXAMPLE 3

19.
$$f(x) = 5^{x-3}$$

20.
$$f(x) = \left(\frac{1}{2}\right)^{x-1}$$

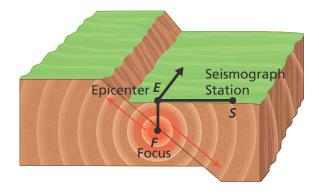

21.
$$f(x) = 6^{x+7}$$

22.
$$f(x) = \log_2(8x)$$

23.
$$f(x) = \text{In } (x+3) - 1$$

23.
$$f(x) = \ln(x+3) - 1$$
 24. $f(x) = 4 \log_2(x-3) + 2$

- **25.** The altitude *y*, in feet, of a plane *t* minutes after takeoff is approximated by the function $y = 5,000 \ln(.05t) + 8,000$. Solve for t in terms of y. What is a situation in which it would be easier to use your new equation rather than the original? SEE EXAMPLE 4
- **26.** Find the average rate of change of the function graphed below over the interval $10 \le x \le 50$. Compare it to the average rate of change of $y = 3 \log x + 12$ over the same interval. **SEE EXAMPLE 5**



APPLY

- 27. Model with Mathematics The equation $r = 90 - 25 \log(t + 1)$ is to model a student's retention r after taking a physics course where r represents a student's test score (as a percent), and t represents the number of months since taking the course.
 - a. Make a table of values for ordered pairs that represent $r = 90 - 25 \log(t + 1)$, rounding to the nearest tenth. Then sketch the graph of the function on a coordinate plane through those ordered pairs. (You may use a graphing calculator to check.)
 - **b.** Find the equation of the inverse. Interpret the meaning of this function.
- 28. Higher Order Thinking As shown by the diagram, an earthquake occurs below Earth's surface at point F (the focus). Point E, on the surface above the focus, is called the epicenter. A seismograph station at point S records the waves of energy generated by the earthquake. The surface wave magnitude M of the earthquake is given by this formula:

$$M = \log\left(\frac{A}{T}\right) + 1.66(\log D) + 3.3$$

In the formula, A is the amplitude of the ground motion in micrometers, T is the period in seconds, and D is the measure of ES in degrees.



- a. Find surface wave magnitude of an earthquake with A = 700 micrometers, T = 2 and $D = 100^{\circ}$.
- **b.** In the formula, $20^{\circ} < D \le 160^{\circ}$. By how much can the size of arc ES affect the surface wave magnitude? Explain.

ASSESSMENT PRACTICE

- **29.** The logarithmic function $g(x) = \ln x$ is transformed to $h(x) = \ln(x + 2) - 1$. Which of the following are true? Select all that apply.
 - A g(x) is translated 2 units upward.
 - \bigcirc g(x) is translated 2 units to the right.
 - \bigcirc g(x) is translated 2 units to the left.
 - \bigcirc g(x) is translated 1 unit downward.

 - F The vertical asymptote shifts 2 units to the left.
 - © The vertical asymptote shifts 2 units to the right.
- **30. SAT/ACT** The graph shows the exponential function $f(x) = 5^{x+1}$. Which of the following functions represents its inverse, $f^{-1}(x)$?

$$(x) = 1 + \log_5 x$$
 $(x) = \log_5 (x - 1)$

31. Performance Task The logarithmic function $M(d) = 5 \log d + 2$ is used to find the limiting magnitude of a telescope, where d represents the diameter of the lens of the telescope (mm) that is being used for the observation.

Part A Find the limiting magnitude of a telescope having a lens diameter of 40 mm.

Part B Find the equation of the inverse of this function.

Part C Interpret why astronomers may wish to use the inverse of this function. Justify your reasoning.

Part D Using the inverse function, find the diameter of the lens that has a limiting magnitude of 13.5. Check your answer with the table function of your graphing calculator.