6-4 Reteach to Build Understanding

Logarithmic Functions

1. All exponential functions of the form $f(x)=b^{x}$ and logarithmic functions of the form $f(x)=\log _{b} x$ are \qquad because these functions have exactly one y-value for each \qquad so when the x and y are \qquad the inverses will also have \qquad x-value for each \qquad
2. Find and correct the error a student made when finding the inverse of the logarithmic funtion $f(x)=\log _{6}(4 x+2)-5$.
$y=\log _{6}(4 x+2)-5 \quad$ Write in $y=f(x)$ from.
$x=\log _{6}(4 y+2)-5 \quad$ Interchange x and y.
$x+5=\log _{6}(4 y+2) \quad$ Add 5 on each side.
$6^{x}+5=4 y+2 \quad$ Rewrite in exponent form.
$6^{x}+3=4 y \quad$ Subtract 2 from each side.
$\frac{6^{x}+3}{4}=y \quad$ Divide by 4 on each side.
The equation of the inverse of $f(x)=\log _{6}(4 y+2)-5$ is $f^{-1}(x)=\frac{6^{x}+3}{4}$.
3. The $f(x)=3^{(x-2)}-1$ and $g(x)=\log _{3}(x+1)+2$ are inverse functions shown on the graph at the right. Complete the table without using a calculator.

$f(x)=3^{(x-2)}-1$		$g(x)=\log _{3}(x+1)+2$	
\boldsymbol{X}	y	\boldsymbol{x}	y
0	$-\frac{8}{9}$	$-\frac{8}{9}$	0
1	$-\frac{2}{3}$		
		0	2
3	2		
		8	4
5	26		
Domain:		Domain:	
Range: $\{y \mid y>-1\}$		Range: All real numbers	
x-intercept: 2; y-intercept: $-\frac{8}{9}$		x-intercept: $-\frac{8}{9}$; y-intercept: 2	
Asymptote:		Asymptote: $y=-1$	
End Behavior: As $x \rightarrow-\infty, y \rightarrow-1$ As $x \rightarrow \infty, y \rightarrow \infty$		End Behavior:	

